• Title/Summary/Keyword: mixing condition

Search Result 1,061, Processing Time 0.022 seconds

The Properties of Livestock Waste Composts Tea Depending on Manufacturing Method and Their Effect on Chinese Cabbage Cultivation

  • Jang, Jae-Eun;Kang, Chang-Sung;Park, Jung-Soo;Kim, Sun-Jae;Kim, Hee-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.8-14
    • /
    • 2015
  • Livestock waste compost tea is a liquid extract of compost obtained by mixing livestock compost. In this study, some chemical and microbiological characteristics of compost tea depending on the kind of raw materials used were examined, and several experiments to investigate the practical effects on Chinese cabbage cultivation were conducted. This experiment showed that livestock composts needed to be added into aerated water at the ratio between 1:100 and 1:10 (1 part compost to 10~100 parts water) to produce the high quality compost tea. Compost teas must be aerated more than 24 to 48 hours to be able to support aerobic organisms. In cultivation test with compost teas, swine manure compost teas were made by the extracting ratio of 50x, in the aerated condition for 24 hours in water and oil cake in the extracting ratio of 100x were added as supplements. Following the input of oil cake, the concentration of nitrogen and aerobic bacteria increased. Another experiment was conducted to determine the effect of different swine manure compost teas on plant growth and yield of Chinese cabbage. The fresh yield of Chinese cabbage was higher in the fertigated plots by compost tea with oil cake compared to those of N, $P_2O_5$, $K_2O$ fertilization plot with chemical fertilizer by soil test recommendation (Fert. NPK). The effect of compost tea on growth of Chinese cabbage was largely attributable to the increased number of microorganisms as well as nutrients.

Development of Solid Lubricants for Oil-less Bush (오일리스 부시용 고체윤활제 개발)

  • Kong, Hosung;Han, Hung-Gu;Kim, Jin Uk;Kim, Kyoung Seok;Park, Jong Sik
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • This work aims to develop a dry lubricant for oilless bush, especially a solid lubricant, thereby creating a coating method with improved properties of anti-friction and load-carrying capacity without oil lubrication. In this work, spherical-shaped powders of thermosetting resin such as polyimide (PI) are mixed with a binder matrix obtained by mixing a fluorocarbon compound resin such as Polytetrafluoroethylene (PTFE) or Ethylene tetra fluoro ethylene (ETFE) with itself or with a non-fluorocarbon thermoplastic resin such as Polyether ether ketone (PEEK). And these dry lubricant mixtures are thickly coated (200-300 mm in the thickness) on the inner surface of the bush by using a wet-typed air-spray deposition method. It was found that the load-carrying capacity of the solid lubricant for excavator bush (60 mm in diameter) that operates under a high load condition (at 40 MPa) is greatly improved owing to the spherical-shaped powders of thermosetting resin. In addition, the coefficient of friction at the sliding surface is also reduced less than 0.1. Thick coating also lowers the contact stress at the edge of a bush that results in better tribological performances. The result suggests that the lubrication performance and durability life of the bush can be remarkably improved even without lubrication (oil or grease).

Adsorption of Zinc Ion in Synthetic Wastewater by Ethylenediaminetetraacetic Acid-Modified Bentonite (에틸렌다이아민테트라아세트산으로 개질된 벤토나이트를 이용한 합성폐수 내 아연 이온 흡착)

  • Jeong, Myung-Hwa;Kwon, Dong-Hyun;Lim, Yeon-Ju;Ahn, Johng-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Ethylenediaminetetraacetic acid-modified bentonite (EMB) was used for adsorption of zinc ion (Zn) from aqueous solution, compared with unmodified bentonite (UB). Parameters such as dose (0.750 ~ 3.125 g/L), mixing intensity (10 ~ 150 rpm), contact time (0.17 ~ 30 min), pH (2 ~ 7), and temperature (298 ~ 338 K), were studied. Zn removal efficiency for EMB was 20 ~ 30 % higher, than that for UB, in all experiments. Thermodynamic studies demonstrated that adsorption process was spontaneous with Gibb's free energy (${\Delta}G$) values, ranging between -5.211 and -7.175 kJ/mol for EMB, and -0.984 and -2.059 kJ/mol for UB, and endothermic with enthalpy (${\Delta}H$) value of 9.418 kJ/mol for EMB and 7.022 kJ/mol for UB. Adsorption kinetics was found to follow the pseudo-second order kinetics model, and its rate constant was 3.41 for EMB and $2.00g/mg{\cdot}min$ for UB. Adsorption equilibrium data for EMB were best represented by the Langmuir adsorption isotherm, and calculated maximum adsorption capacity was 2.768 mg/g. It was found that the best conditions for Zn removal of EMB within the range of operation used, were 3.125 g/L dose, 90 rpm intensity, 10 min contact time, pH 4, and 338 K. Therefore, EMB has good potential for adsorption of Zn.

Study on the Gel Cleaning System for Removal of Poly (vinyl acetate) Fixative of the Mural Paintings of the Payathonzu Temple in Bagan, Myanmar (I) - Focusing on Properties and Removability of Gel Cleaners -

  • Yu, Yeong Gyeong;Han, Gyu-Seong;Lee, Hwa Soo;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.37 no.4
    • /
    • pp.370-379
    • /
    • 2021
  • In the past, PVAc [poly(vinyl acetate)] was used as a fixative for the conservation of the murals in the murals of the Payathonzu temple located in Bagan, Myanmar. In this study, attention was paid to gel cleaning as a method for stably removing such PVAc fixatives. Based on the recent research trend related to the cleaning of murals in Bagan ruins, 3 types of gelling agents (Nevek®, Laponite®RD, Carbopol®980) and 2 types of organic solvents (Acetone, Dimethyl carbonate) were selected. Six types of gel cleaners were prepared by mixing gelling agents and organic solvents, and the properties and fixative removability of these cleaners were compared. As a result of confirming the properties of the prepared gel cleaners, the pH of the cleaners was all in the weak acidic to weakly alkaline range, which was a stable condition for mural application. Also, there was no difference in the viscosity of the cleaners depending on the type of solvent, but there was a difference depending on the type of gelling agent used. Regarding the weight loss ratio of PVAc, which is an indicator of removability, the exposure conditions of the gel cleaners, the boiling point of the solvent used, and the viscosity of the gelling agent acted as factors affecting. As a result of comparing the removability of gel cleaners, it was confirmed that the solvent's fixative solubility, the volatility of the solvent itself, and the solvent release control properties of the gelling agent had a great effect on the removability of the gel cleaners. In Part 2, the stability and the running applicability of the gel cleaners will be investigated by making mockup samples reflecting the properties of the materials and techniques used to produce the mural paintings in the Payathonzu Temple.

Evaluation of Heat Waves Predictability of Korean Integrated Model (한국형수치예보모델 KIM의 폭염 예측 성능 검증)

  • Jung, Jiyoung;Lee, Eun-Hee;Park, Hye-Jin
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.277-295
    • /
    • 2022
  • The global weather prediction model, Korean Integrated Model (KIM), has been in operation since April 2020 by the Korea Meteorological Administration. This study assessed the performance of heat waves (HWs) in Korea in 2020. Case experiments during 2018-2020 were conducted to support the reliability of assessment, and the factors which affect predictability of the HWs were analyzed. Simulated expansion and retreat of the Tibetan High and North Pacific High during the 2020 HW had a good agreement with the analysis. However, the model showed significant cold biases in the maximum surface temperature. It was found that the temperature bias was highly related to underestimation of downward shortwave radiation at surface, which was linked to cloudiness. KIM tended to overestimate nighttime clouds that delayed the dissipation of cloud in the morning, which affected the shortage of downward solar radiation. The vertical profiles of temperature and moisture showed that cold bias and trapped moisture in the lower atmosphere produce favorable conditions for cloud formation over the Yellow Sea, which affected overestimation of cloud in downwind land. Sensitivity test was performed to reduce model bias, which was done by modulating moisture mixing parameter in the boundary layer scheme. Results indicated that the daytime temperature errors were reduced by increase in surface solar irradiance with enhanced cloud dissipation. This study suggested that not only the synoptic features but also the accuracy of low-level temperature and moisture condition played an important role in predicting the maximum temperature during the HWs in medium-range forecasts.

Evaluation of EFDC for the Simulations of Water Quality in Saemangeum Reservoir (새만금호 수질예측 모의를 위한 EFDC 모형의 평가)

  • Jeon, Ji Hye;Chung, Se Woong;Park, Hyung Seok;Jang, Jeong Ryeol
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.445-460
    • /
    • 2011
  • The objective of this study was to construct and assess the applicability of the EFDC model for Saemangeum Reservoir as a 3D hydrodynamic and water quality modeling tool that is necessary for the effective management of water quality and establishment of conservation measures. The model grids for both reservoir system only and reservoir-ocean system were created using the most recent survey data to compare the effects of different downstream boundary conditions. The model was applied for the simulations of temperature, salinity, water quality variables including chemical oxygen demand (COD), chlorophyll-a (Chl-a), phosphorus and nitrogen species and algal biomass, and validated using the field data obtained in 2008. Although the model reasonably represented the temporal and spatial variations of the state variables in the reservoir with limited boundary forcing data, the salinity level was underestimated in the middle and upstream of the reservoir when the flow data were used at downstream boundaries; Sinsi and Garyuk Gates. In turn, the error caused to increase the bias of water quality simulations, and inaccurate simulation of density flow regime of river inflow during flood events. It is likely because of the loss of momentum of sea water intrusion at downstream boundaries. In contrast to flow boundary conditions, the mixing between sea water and freshwater was well reproduced when open water boundary condition was applied. Thus, it is required to improve the downstream boundary conditions that can accommodate the real operations of the sluice gates.

Reactivity of aluminosilicate materials and synthesis of geopolymer mortar under ambient and hot curing condition

  • Zafar, Idrees;Tahir, Muhammad Akram;Hameed, Rizwan;Rashid, Khuram;Ju, Minkwan
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.71-81
    • /
    • 2022
  • Aluminosilicate materials as precursors are heterogenous in nature, consisting of inert and partially reactive portion, and have varying proportions depending upon source materials. It is essential to assess the reactivity of precursor prior to synthesize geopolymers. Moreover, reactivity may act as decisive factor for setting molar concentration of NaOH, curing temperature and setting proportion of different precursors. In this experimental work, the reactivities of two precursors, low calcium (fly ash (FA)) and high calcium (ground granulated blast furnace slag (GGBS)), were assessed through the dissolution of aluminosilicate at (i) three molar concentrations (8, 12, and 16 M) of NaOH solution, (ii) 6 to 24 h dissolution time, and (iii) 20-100℃. Based on paratermeters influencing the reactivity, different proportions of ternary binders (two precursors and ordinary cement) were activated by the combined NaOH and Na2SiO3 solutions with two alkaline activators to precursor ratios, to synthesize the geopolymer. Reactivity results revealed that GGBS was 20-30% more reactive than FA at 20℃, at all three molar concentrations, but its reactivity decreased by 32-46% with increasing temperature due to the high calcium content. Setting time of geopolymer paste was reduced by adding GGBS due to its fast reactivity. Both GGBS and cement promoted the formation of all types of gels (i.e., C-S-H, C-A-S-H, and N-A-S-H). As a result, it was found that a specified mixing proportion could be used to improve the compressive strength over 30 MPa at both the ambient and hot curing conditions.

A Study on the Simulation of Underground Acoustic Telemetry (지중 원격 음파통신 시뮬레이션 연구)

  • Shin, Younggy
    • Plant Journal
    • /
    • v.18 no.2
    • /
    • pp.41-45
    • /
    • 2022
  • The conventional communication method using mud flow pressure waves has a speed of 1-2 bps, so it takes a long time to communicate, making real-time control impossible. Although the sound wave communication method for improving the communication speed by 10 times or more has been commercialized, its use is limited due to its high price and there are not many application cases. In this study, the simulator corresponding to the facility was developed to develop performance similar to the actual test results. For simulating sound wave communication through a drill pipe, we proposed a governing equation that can simulate friction damping by mud and developed a numerical analysis model. The attenuation factor was corrected by comparing it with the attenuation rate of sound wave energy at the drilling site. The developed numerical analysis model was applied to the QPSK modulation type communication algorithm to confirm the excellent performance of the communication error rate of 0.04% in the ground. This is the communication performance under the condition that noise has not been mixed yet, and in order to apply it, the technology of reproducing the actual noise signal for mixing by securing the field noise data was established.

  • PDF

Effect of perlite powder on properties of structural lightweight concrete with perlite aggregate

  • Yan, Gongxing;Al-Mulali, Mohammed Zuhear;Madadi, Amirhossein;Albaijan, Ibrahim;Ali, H. Elhosiny;Algarni, H.;Le, Binh Nguyen;Assilzadeh, Hamid
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.393-411
    • /
    • 2022
  • A high-performance reactive powder concrete (RPC) has been readied alongside river sand, with 1.25 mm particle size when under the condition of 80C steam curing. As a heat and sound insulation, expanded perlite aggregate (EPA) provides economic advantages in building. Concrete containing EPA is examined in terms of cement types (CEM II 32.5R and CEM I 42.5R), doses (0, 2%, 4% and 6%) as well as replacement rates in this research study. The compressive and density of concrete were used in the testing. At the end of the 28-day period, destructive and nondestructive tests were performed on cube specimens of 150 mm150 mm150 mm. The concrete density is not decreased with the addition of more perlite (from 45 to 60 percent), since the enlarged perlite has a very low barrier to crushing. To get a homogenous and fluid concrete mix, longer mixing times for all the mix components are necessary due to the higher amount of perlite. As a result, it is not suggested to use greater volumes of this aggregate in RPC. In the presence of de-icing salt, the lightweight RPC exhibits excellent freeze-thaw resistance (mass is less than 0.2 kg/m2). The addition of perlite strengthens the aggregate-matrix contact, but there is no apparent ITZ. An increased compressive strength was seen in concretes containing expanded perlite powder and steel fibers with good performance.

Characteristics of the Adhesion Layer for the Flexible Organic Light Emitting Diodes (플렉시블 OLED 소자 제작을 위한 접합층 특성 연구)

  • Cheol-Hee Moon
    • Journal of Adhesion and Interface
    • /
    • v.24 no.3
    • /
    • pp.86-94
    • /
    • 2023
  • To fabricate all-solution-processed flexible Organic Light-Emitting Diodes (OLEDs), we demonstrated a bonding technology using a polyethyleneimine (PEI) as an adhesion layer between the two substrates. As the adhesion layer requires not only a high adhesion strength, but also a high current density, we have tried to find out the optimum condition which meets the two requirements at the same time by changing experimental factors such as PEI concentration, thickness of the layer and by mixing some additives into the PEI. The adhesion strength and the electrical current density were investigated by tensile tests and electron only device (EOD) experiments, respectively. The results showed that at higher PEI concentration the adhesion strength showed higher value, but the electrical current through the PEI layer decreased rapidly due to the increased PEI layer thickness. We added Sorbitol and PolyEthyleneGlycohol (PEG) into the 0.1 wt% PEI solution to enhance the adhesion and electrical properties. With the addition of the 0.5 wt% PEG into the 0.1 wt% PEI solution, the device showed an electrical current density of 900 mA/cm2 and a good adhesion characteristic also. These data demonstrated the possibility of fabricating all-solution-processed OLEDs using two-substrate bonding technology with the PEI layer as an adhesion layer.