• Title/Summary/Keyword: mixer design

Search Result 296, Processing Time 0.032 seconds

Design of the 60 GHz Single Balanced Mixer Integrated with 180° Hybrid Coupler Using MEMS Technology (HEMS 기술을 이용한 180° 하이브리드 결합기가 집적된 단일 평형 혼합기의 설계 및 제작에 관한 연구)

  • Kim Sung-Chan;Lim Byeong-Ok;Baek Tae-Jong;Ko Baek-Seok;An Dan;Kim Soon-Koo;Shin Dong-Hoon;Rhee Jin-Koo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.7 s.98
    • /
    • pp.753-759
    • /
    • 2005
  • In this paper, we have developed a new type of single balanced mixer with the RF MEMS $180^{\circ}$ hybrid coupler using surface micromachining technology. The $180^{\circ}$ hybrid coupler in this mixer is composed of the dielectric-supported air gapped microstriplines(DAMLs) which have signal line with $10{\mu}m$ height to reduce substrate dielectric loss and dielectric posts with size of $20{\mu}m{\times}20{\mu}m$ to elevate the signal line on air with stability At LO power of 7.2 dBm, the conversion loss was 15.5 dB f3r RF frequency or 57 GHz and RF power of -15 dBm. Also, we obtained the good RF to LO isolation of -40 dB at LO frequency of 58 GHz and LO power of 7.2 dBm. The main advantage of this type of mixer is that we are able to reduce the size of the chips due to integrating the MEMS passive components.

Design of Photobioreactor for Mass Production of Microalgae (미세조류 대량 생산용 광생물반응기 설계)

  • Ahn, Dong-Gyu;Cho, Chang-Gyu;Jeong, Sang-Hwa;Lee, Dong-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.140-153
    • /
    • 2011
  • The objective of this paper is to investigate into the design of photbioreactor for mass production of microalgae. Characteristics of previously developed photobioreactors were examined to obtain design factors, including light transfer, fluid dynamics and metabolic reactions, of the photobioreactor. Design technology of components related to the design factors, such as light sources, photobioreactor cases, spargers, mixer, etc., was discussed to improve the viability and the growth rate of microalgal and productivity of the photobioreactor. Finally a principle direction of the design for an airlift flat plane photobiorectors was investigated.

Design of a Broadband Single Balanced Diode Mixer Using a Vortical Coupling Structure (Vertical Coupling 구조를 이용한 광대역 단일 평형 다이오드 혼합기의 설계)

  • Lee Myeong-Gil;Yun Tae-Soon;Nam Hee;Lee Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.3 s.8
    • /
    • pp.45-50
    • /
    • 2005
  • In this paper, a broadband single balanced mixer is presented using a wideband rat-race implementation by vertical coupling. Frequency is selected as $1.5{\sim}3$ GHz for RF, $1.64{\sim}3.14$ GHz for LO, and 140 MHz for IF signals. When LO signal with 6 dBm at 2.7 GHz is injected, a conversion loss of 7.5 dB and RF to LO isolation of 30 dB are obtained. Also, an average conversion loss of 10 dB, RF to LO isolation of 30 dB, and LO to IF isolation of 45 dB are obtained for frequency band of $1.5{\sim}3$ GHz.

  • PDF

Design and Fabrication of a Broadband RF Module for 2.4GHz Band Applications (2.4GHz 대역에서의 응용을 위한 광대역 RF모듈 설계 및 제작)

  • Yang Doo-Yeong;Kang Bong-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.4
    • /
    • pp.1-10
    • /
    • 2006
  • In this paper, a broadband RF module is designed and tested for 2.4GHz band applications. The RF module is composed of a low noise amplifier (LNA) with a three stage amplifier, a single ended gate mixer, matching circuits, a hairpin line band pass filter and a Chebyshev low pass filter to convert the radio frequency (RF) into the intermediate frequency (IF). The LNA has a high gain and stability, and the single ended gate mixer has a high conversion gain and wide dynamic range. In the analysis of the broadband RF module, the composite harmonic balance technique is used to analyze the operating characteristics of an RF module circuit. The RF module has a 55.2dB conversion gain with a 1.54dB low noise figure, $-120{\sim}-60dBm$ wide RF power dynamic range, -60dBm low harmonic spectrum and a good isolation factor among the RF, IF, and local oscillator (LO) ports.

  • PDF

Design and Fabrication of a Ka-Band Planar Filter to Suppress Spurious of a Mixer (혼합기 불요파 제거를 위한 Ka 대역 평판형 여파기 설계 및 제작)

  • Lee, Man-Hee;Yang, Seong-Sik;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1104-1114
    • /
    • 2008
  • In the output of a mixer, spurious appears with the desired signal, and a filter is necessary to suppress the spurious. In this paper, the planar filter for Ka-band frequency synthesizer was designed and fabricated. In this procedure, the frequency response becomes asymmetric because of discontinuities at the high frequency. Using this, we designed short-end PCLF by using a individual resonator tuning method. The fabricated 5th-order Ka-band pass filter is compared with the result of EM simulation through measurement. The performance agrees with the simulation. Finally spurious suppression was examined through the measurement of output spectrum of the mixer with the filter.

A Design and Fabrication of 120 GHz Local Oscillator (120 GHz 국부발진기의 설계 및 제작)

  • Lee, Won-Hui;Chung, Tae-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.71-76
    • /
    • 2010
  • In this paper, a 120 GHz local oscillator(LO) for the sub-harmonic mixer in the THz transceiver with a carrier frequency of 240 GHz was designed and fabricated. A 120 GHz local oscillator was composed of 40 GHz PLL(Phase Locked Loop), 40 GHz BPF(Band Pass Filter), frequency tripler and 120 GHz BPF. The commercial model of the frequency tripler was used. The measured result of the 40 GHz PLL showed the phase noise of -105 dBc/Hz at the 100 kHz offset frequency. The measured result of 120 GHz BPF showed the insertion loss of 1.3 dB at center frequency of 119 GHz with bandwidth of 5 GHz. The output power of 120 GHz LO was measured to 6.6 dBm.

Design and Implementation of Double Down-Converter for Satellite TV (위성 TV용 이중 하향 변환기의 설계 및 제작)

  • Lee, Seung-Dae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.840-845
    • /
    • 2013
  • In this paper, the broadband frequency double down-converter based on LC filter technologies has been designed and implemented, and its performances are introduced. The Designed frequency double down-converter is consisted with a low-noise amplifier, mixer, IF amplifier, LC filter, DC-block capacitor and RF-bypass capacitor. Especially, instead of active devices of a typical converter, the suggested converter designed using passive devices to provide both low-power consumption and low-cost model. As results of the measurement, the implemented frequency double down-converter realizes the broadband performance with the bandwidth of 100MHz (13~113MHz) at the center frequency of 63MHz, and its gain is approximately 40dB.

An Integrated High Linearity CMOS Receiver Frontend for 24-GHz Applications

  • Rastegar, Habib;Ryu, Jee-Youl
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.595-604
    • /
    • 2016
  • Utilizing a standard 130-nm CMOS process, a RF frontend is designed at 24 GHz for automotive collision avoidance radar application. Single IF direct conversion receiver (DCR) architecture is adopted to achieve high integration level and to alleviate the DCR problem. The proposed frontend is composed of a two-stage LNA and downconversion mixers. To save power consumption, and to enhance gain and linearity, stacked NMOS-PMOS $g_m$-boosting technique is employed in the design of LNA as the first stage. The switch transistors in the mixing stage are biased in subthreshold region to achieve low power consumption. The single balanced mixer is designed in PMOS transistors and is also realized based on the well-known folded architecture to increase voltage headroom. This frontend circuit features enhancement in gain, linearity, and power dissipation. The proposed circuit showed a maximum conversion gain of 19.6 dB and noise figure of 3 dB at the operation frequency. It also showed input and output return losses of less than -10 dB within bandwidth. Furthermore, the port-to-port isolation illustrated excellent characteristic between two ports. This frontend showed the third-order input intercept point (IIP3) of 3 dBm for the whole circuit with power dissipation of 6.5 mW from a 1.5 V supply.

Design and Fabrication of RF evaluation board for 900MHz (900MHz대역 수신기용 RF 특성평가보드의 설계 및 제작)

  • 이규복;박현식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.1-7
    • /
    • 1999
  • A single RF transceiver evaluation board have been developed for the purpose of application to the 900MHz band transceiver contained RF-IC chip And environment test was evaluated. The RF-IC chipset includes LNA(Low Noise Amplifier), down-conversion mixer, AGC(Automatic Gain Controller), switched capacitor filter and down sampling mixer. The RF evaluation board for the testing of chipset contained various external matching circuits, filters such as RF/IF SAW(Surface Acoustic Wave) filter and duplexer and power supply circuits. With the range of 2.7~3.3V the operated chip revealed moderate power consumption of 42mA. The chip was well operated at the receiving frequency of 925~960MHz. Measurement result is similar to general RF receiving specification of the 900MHz digital mobile phone.

  • PDF

The Design of Image Rejection Mixer (이미지 제거 혼합기의 설계)

  • Kang, Eun Kyun;Jeon, Hyung Jun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.123-127
    • /
    • 2017
  • This paper fabricated and analyzed the image rejection mixer that uses FET's channel resistance. It can be applied for capacity 64QAM that has 50MHz~90MHz of IF band, 8.17GHz of LO frequency and 8.08~8.12GHz of RF band. When IF input power is -20dBm and LO input power is 10dBm, RF output power is obtained -33.2dBm. In this case, conversion loss is 12.9dB, the suppression of 14.3dB for LO frequency and 10.4dB for image frequency. The result of two tone test shows great IMD characteristics with 51.7dBc.