• Title/Summary/Keyword: mixed-culture

Search Result 333, Processing Time 0.149 seconds

Production of Ethanol Directly from Potato Starch by Mixed Culture of Saccharomyces cerevisiae and Aspergillus niger Using Electrochemical Bioreactor

  • Jeon, Bo-Young;Kim, Dae-Hee;Na, Byung-Kwan;Ahn, Dae-Hee;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.545-551
    • /
    • 2008
  • When cultivated aerobically, Aspergillus niger hyphae produced extracellular glucoamylase, which catalyzes the saccharification of unliquified potato starch into glucose, but not when grown under anaerobic conditions. The $K_m\;and\;V_{max}$ of the extracellular glucoamylase were 652.3 mg/l of starch and 253.3 mg/l/min of glucose, respectively. In mixed culture of A. niger and Saccharomyces cerevisiae, oxygen had a negative influence on the alcohol fermentation of yeast, but activated fungal growth. Therefore, oxygen is a critical factor for ethanol production in the mixed culture, and its generation through electrolysis of water in an electrochemical bioreactor needs to be optimized for ethanol production from starch by coculture of fungal hyphae and yeast cells. By applying pulsed electric fields (PEF) into the electrochemical bioreactor, ethanol production from starch improved significantly: Ethanol produced from 50 g/l potato starch by a mixed culture of A. niger and S. cerevisiae was about 5 g/l in a conventional bioreactor, but was 9 g/l in 5 volts of PEF and about 19 g/l in 4 volts of PEF for 5 days.

Hydrogen Evolution by Mixed Culture of Clostridia with Rhodopseudornonas sphaeroides (Rhodopseudomonas sphaeroides와 Clostridia의 혼합)

  • Yi, Hye-Joo;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.430-436
    • /
    • 1992
  • Hydrogen evolution by mixed fermentation of Clostn"dium butyn"cum and photosynthetic bacteria which were capable of consuming clostridial metabolites and evolving hydrogen was investigated. Acetate and butyrate formed from anaerobic clostridial fermentation were efficiently utilized by Rhodopseudomonas sPhaeroides K-7. For complete bioconversion of clostridial metabolites such as acetate and butyrate into hydrogen, mixed culture of both anaerobic organisms forming molecular hydrogen was performed. By the mixed culture, the yield of hydrogen production increased by 20 to 75% and the levels of clostridial metabolites such as acetate, butyrate decreased in the fermentation broth. Influence of cell mixing ratio. mixing time and inoculum level on hydrogen evolution by mixed culture were examined. And then cometabolic pattern compared with in pure culture was observed as time course.

  • PDF

Hydrogen Evolution through Mixed Continuous Culture of Rhodopseudomonas sphaeroides and Clostridium butyricum (Rhodopseudomonas sphaeroides와 Clostridium butyricum의 혼합배양을 통한 수소생성의 연속발효계)

  • Go, Young-Hyun;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.1
    • /
    • pp.46-53
    • /
    • 1999
  • The purpose of this study was to optimize the conditions of continuous mixed culture of C.butyricum and R. spaeroides K-7, which were able to produce hydrogen using biomass-dreived substrate. To investigate the possibility of continuous culture, semi-continuous culture was carried out for 20 days. In semi-continuous culture using the reactor system, the replacement rate of fresh medium was 30% of total medium volume for the highest hydrogen evolution. In continuous culture, the optimum dilution rate was determined to be 0.05$h^{-1}$. The continuous culture produced 3.1 times as compared with the hydrogen on batch culture. On the other hand, the continuous mixed culture produced 1.3~2.1 times as much as hydrogen of the continuous monoculture of C. butyricum. When 10g of glucose in the media (1l) was supplied as a carbon source on continuous culture, mixed culture of C. butyricum and R. sphaeroides K-7 increased hydrogen evolution rate. Because considerable amount of glutamate was contained in waste water of glutamate fermentation, utilization of glutamate was examined in mixed culture. As a result of examination, production of hydorgen was slightly inhibited by high concentration of glutamate, more than 20mM, on continuous monoculture of R. sphaeroides K-7. On the other hand, both on continuous monoculture of C. butyricum and on mixed culture of C. butyricum and R. sphaeroides K-7, production of hydrogen was not inhibited by high concentration of glutamate such as 100mM. Hence this suggests that high concentration of waste water can be used as good substrate for hydrogen production on monoculture of C. butyricum and mixed culture of C. butyricum and R. sphaeroides K-7.

  • PDF

The Case Study of Lactobacillus mixture culture fluid on Atopic dermatitis (아토피피부염에 대한 Lactobacillus 혼합배양액의 임상 증례)

  • Jo, Eul-Hwa;Kim, Tae-Keun;Hong, Su-Jung;Jung, Do-Yean;Hwang, Seng-Yean;Ahn, Seong-Hun
    • The Journal of Korean Medicine
    • /
    • v.36 no.3
    • /
    • pp.135-143
    • /
    • 2015
  • Objectives: Recently lactic acid formulation was known as the adjuvant therapy on atopic dermatitis(AD) symptoms because of little side effects. In this study, it was studied that Lactobacillus mixed culture appliment was effective on not on AD symptoms. Methods: The case-photos 30-40 times of AD symptoms from case were observed with literatures. The case-photos were acquired with environmental AD dermatitis experience program which is conducted in SUNCHANG RESERCH INSTITUTE OF HEALTH AND LONGEVITY from 2014.01 to 2014.08. Experience applicants were limited the oral administration and chemical external administration. Results: Lactobacillus mixed culture appliment was effective because of the mitigation or disappearance of AD primary symptoms like pruritus, erythema, edema, effusion, dry skin, scaly, scab etc. AD symptom degree was dependent on lactobacillus mixed culture appliment times, and classified as Reaction Period (RAP), Reduction Period (RDP), Efection Period (EP), Reproduction Period (RPP) on a single mixed culture appliment time. And AD symptoms which were appeared in RPP were classified as Rebound Period (RBP), Effection Period (EP), Subclinical Period (SCP). Conclusions: Lactobacillus mixed culture appliment is considered to be useful for AD symptoms and is estimated to be effective by different mechanism with oral administration or steroid ointment application. Lactobacillus mixed culture appliment is expected to induce a synergistic effects on AD symptom reliefs with the other oral administration.

Biological Treatment of Wastewater Containing Chlorinated Phenols by a Mixed Culture (복합미생물제재를 이용한 염소화 페놀계 폐수의 생물학적 처리)

  • 오희목;이완석;정상욱;박찬선;윤병대;김장억
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.115-121
    • /
    • 2001
  • Biological Treatment of Wastewater Containing Chlorinated Phenols by a Mixed Culture. Lee, Wan-Seok1, Sang-Wook Jung, Chan-Sun Park, Byung-Dae Yoon, Jang-Eok Kim\ and Hee-Mock Oh*. Environmental Bioresources Laboratory, Korea Research Institute of Biosicence and Biotechnology, Taejon, Korea, 1 Department of Agricultural Chemistry, Kyungpool< National University, Taegu, Korea - The biodegradation of chlorinated phenols in an artificial wastewater was investigated using a mixed culture. The mixed culture was composed of 8 microorganisms isolated from the soil contaminated with various chlorinated phenols. Pseudomonas sp. BM as a main constituent of a mixed culture was Gram-negative, catalase- and oxidase-positive, and rod-shaped, and did not grow at 41°C. It degraded 99% of initial 500 mg!1 of pentachlorophenol (PCP) in the minimal salts medium as a sole source of carbon and energy within 3 days. The degradation efficiency of Pseu.domon.as sp. BM was not affected by the other organic carbon and nitrogen compounds. Pseudomonas sp. BM was able to grow in a broad range of pH 5 - 8, and degrade 2,000 mg/1 PCP. In the experiment with an artificial wastewater containing chlorinated phenols, the degradation efficiency of the mixed culture was the range of 73% (2,4-dichlorophenol) -96% (2-chlorophenol) during an incubation of 7 days. In a continuous culture experiment, the degradation efficiency of mixed culture plus activated sludge was about 2 times higher than that of the control containing only activated sludge. These results indicate that it is possible to apply the mixed culture to other wastewaters containing chlorinated phenols. Key words: Biodegradation, chlorinated phenols, pentachlorophenol, Pseudomonas sp. BM

  • PDF

Effect of Acetic Acid Concentration and Mixed Culture of Lactic Acid Bacteria on Producing Bacterial Cellulose Using Gluconacetobacter sp. gel_SEA623-2 (Gluconacetobacter sp. gel_SEA623-2를 이용한 Bacterial Cellulose 생산에 초산농도 및 유산균 혼합배양이 미치는 영향)

  • Kim, Kyung min;Kim, Jihyeon;Yang, Kyong Wol
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.227-232
    • /
    • 2014
  • In this study, Gluconacetobacter sp. gel_SEA623-2 isolated from citrus that produces bacterial cellulose was used to examine the effect of initial concentration of acetic acid and mixed culture inoculated with Lactobacillus plantarum KCCM 80077 on productivity of bacterial cellulose. In mixed culture added with 0.5% acetic acid, the viable cell count increased from $2.4{\times}10^6CFU/ml$ to $1.1{\times}10^7CFU/ml$ after 14 days of culture, and total acidity was about 0.3% higher than single culture added with 0.5% acetic acid, which implies that additional lactic acid was produced by L. plantarum KCCM 80077. In single culture, although bacterial cellulose productivity was higher when the initial concentrations of acetic acid were 0.0% and 0.5%, than when it was 1.0%, there was no significant difference. However, in mixed culture, adding 0.5% acetic acid resulted in dry weight of $37.83{\pm}6.81g/L$ and thickness of $10.33{\pm}0.58mm$, showing a significant difference from that of single culture added with 1% acetic acid, $28.40{\pm}1.23g/L$ and $7.50{\pm}0.50mm$ (P<0.05).

Ethanol Production by the Mixed Culture of Some Aspergilli and Saccharomyces cerevisiae (효모와 고오지 곰팡이의 혼합배양에 의한 주정생산)

  • Choi, Byung-Kwon;Kim, Young-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.696-699
    • /
    • 1990
  • Some mixed culture systems consisting of koji molds and yeast were tested for the ethanol production by simultaneous saccharification and fermentation using polished rice as the substrate. Aspergillus shirousamii showed the highest ethanol production in the mixed culture with Saccharomyces cerevisiae on steamed rice added with 150 ml water in 250 ml Erlenmeyer flask. The optimum initial pH, temperature and specific surface for the ethanol production in this system were 6.5, $30^{\circ}C$, and 0.1, respectively. Under this condition, 12.9% ethanol was produced with inoculation with $5{\times}10^2$ conidia/ml of A. shirousamii and $5{\times}10^6\;cells/ml$ of S. cerevisiae in 10 days.

  • PDF

Microbial Basis for Enhanced Degradation of the Fumigant 1,3-Dichloropropene (1,3-D) in Soil

  • Chung, Keun-Yook
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • /
    • pp.125-139
    • /
    • 2000
  • The differential enhanced degradation of cis- and trans-1,3-D was observed in the previous two studies performed by Ou et al. (1995) and especially Chung et al. (1999). This study was initiated to investigate the involvement of microorganisms in the differential enhanced degradation of the chemicals. As expected, microorganisms were responsible for the enhanced degradation of the chemicals. A mixed bacterial culture capable of degrading 1,3-D was isolated from an enhanced soil sample collected from a site treated with 1,3-D. Similar to the enhanced soil, the mixed culture degraded trans-1,3-D faster than cis-1,3-D. This mixed culture could not utilize cis- and trans-1,3-D as a sole source of carbon for growth. Rather, a variety of second substrates were evaluated to stimulate the differential enhanced degradation of the two isomers. As a result, the mixed culture degraded cis- and trans-1,3-D only in the presence of a suitable second substrate. Second substrates that had the capacity to stimulate the degradation included soil leachate, tryptone, tryptophan, and alanine. Other substrates tested, including soil extract, glucose, yeast extract, and indole (ailed to stimulate the degradation of the two isomers. Therefore, it appeared that the degradation of cis- and trans-1,3-D was a cometabolic process. The mixed culture was composed of four morphologically distinctive bacterial colonies.

  • PDF

Effect of Single or Mixed Culture of Lactobacillus bulgaricus and Streptococcus thermophilus on Fermentation Characteristics of Buckwheat Sprout-added Yoghurt (Lactobacillus bulgaricus 와 Streptococcus thermophilus 의 단독 또는 혼합배양한 메밀싹 첨가 요구르트의 발효 특성)

  • Kang, Ha-Ni;Kim, Chul-Jai
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.1
    • /
    • pp.76-81
    • /
    • 2010
  • This study was conducted to evaluate the influence of Lactobacillus bulgaricus and/or Sterptococcus thermophilus on the fermentation of yoghurt containing 5% (w/v) buckwheat sprouts. The results revealed that after 12 hours of fermentation the appropriate pH, titratable acidity and number of viable cells were attained. At that time, the rutin content of the buckwheat sprout-added yoghurt prepared by the mixed culture method was not changed, but the quercetin content increased greatly. Conversely, the rutin content of yoghurt that only contained Streptococcus thermophilus was decreased while the quercetin content was increased. The total phenol contents as well as the DPPH radical scavenging activities of both the mixed culture and Streptococcus thermophilus yoghurt did not differ significantly. Taken together, the results revealed that the use of a mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus during the preparation of buchwheat sprout-added yoghurt was desirable due to the decrease in pH and increase in titratable acidity and viable cells that occurred after 12 hr of fermentation. Moreover, phytochemicals in buckwheat sprouts such as rutin, quercetin and phenol compounds were comparatively increased during fermentation and influenced the antioxidant activity in buckwheat sprout-added yoghurt.

Kinetics of nitrification and acrylamide biodegradation by Enterobacter aerogenes and mixed culture bacteria in sequencing batch reactor wastewater treatment systems

  • Madmanang, Romsan;Jangkorn, Siriprapha;Charoenpanich, Jittima;Sriwiriyarat, Tongchai
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.309-317
    • /
    • 2019
  • This study evaluated the kinetics of acrylamide (AM) biodegradation by mixed culture bacteria and Enterobacter aerogenes (E. aerogenes) in sequencing batch reactor (SBR) systems with AQUASIM and linear regression. The zero-order, first-order, and Monod kinetic models were used to evaluate the kinetic parameters of both autotrophic and heterotrophic nitrifications and both AM and chemical oxygen demand (COD) removals at different AM concentrations of 100, 200, 300, and 400 mg AM/L. The results revealed that both autotrophic and heterotrophic nitrifications and both AM and COD removals followed the Monod kinetics. High AM loadings resulted in the transformation of Monod kinetics to the first-order reaction for AM and COD removals as the results of the compositions of mixed substrates and the inhibition of the free ammonia nitrogen (FAN). The kinetic parameters indicated that E. aerogenes degraded AM and COD at higher rates than mixed culture bacteria. The FAN from the AM biodegradation increased both heterotrophic and autotrophic nitrification rates at the AM concentrations of 100-300 mg AM/L. At higher AM concentrations, the FAN accumulated in the SBR system inhibited the autotrophic nitrification of mixed culture bacteria. The accumulation of intracellular polyphosphate caused the heterotrophic nitrification of E. aerogenes to follow the first-order approximation.