• Title/Summary/Keyword: mixed supplementation

Search Result 209, Processing Time 0.025 seconds

Isolation and Characterization of Cellulolytic Anaerobic Fungi from the Guts of the Hanwoo Cattle and the Korean Native Goat (한우 및 산양의 장내 섬유소 분해 혐기 곰팡이의 분리 및 특성 구명)

  • Kim, C.H.;Lee, S.S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.1019-1030
    • /
    • 2003
  • The study was conducted to isolate and identify highly fibrolytic anaerobic fungi from the guts of a Hanwoo steer and a Korean native goat, and then investigate the characterization of cellulolytic activity of an anaerobic fungus. Twenty-one anaerobic fungal colonies were isolated in the study, in which 16 colonies were isolated from the rumen contents of the Hanwoo steer and 5 colonies from the duodenal fluids of the Korean native goat. Four anaerobic fungi were selected based on higher cellulolytic enzyme activities to identify under a optical microscope. NLRI-M003 and -T004 belong to Neocallimastix genus and NLRI-M014 belongs to Piromyces genus based on the morphology of their thallus, sporangia, rhizoid and the number of flagella. NLRI-M001 appeared to be an unknown strain of anaerobic fungi due to its different morphology from existing types of anaerobic fungi, though the morpholgoy is similar to Orpinomyces sp. Supplementation of 2% anaerobic fungal culture(NLRI-M003) in rumen-mixed microorganisms increased in vitro DM degradability of rice straw and filter paper up to 4 and 11%, respectively, compared with non-supplementation(control). CMCase and xylanase activities in in vitro culture were also higher in 2% fungal supplementation than controls in both rice straw and filter paper substrates.

"Dietary supplementation of L-tryptophan" increases muscle development, adipose tissue catabolism and fatty acid transportation in the muscles of Hanwoo steers

  • Priatno, Wahyu;Jo, Yong-Ho;Nejad, Jalil Ghassemi;Lee, Jae-Sung;Moon, Jun-Ok;Lee, Hong-Gu
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.595-604
    • /
    • 2020
  • This study investigated the effects of dietary rumen-protected L-tryptophan (TRP) supplementation (43.4 mg of L-tryptophan kg-1 body weigt [BW]) for 65 days in Hanwoo steers on muscle development related to gene expressions and adipose tissue catabolism and fatty acid transportation in longissimus dorsi muscles. Eight Hanwoo steers (initial BW = 424.6 kg [SD 42.3]; 477 days old [SD 4.8]) were randomly allocated to two groups (n = 4) of control and treatment and were supplied with total mixed ration (TMR). The treatment group was fed with 15 g of rumen-protected TRP (0.1% of TMR as-fed basis equal to 43.4 mg of TRP kg-1 BW) once a day at 0800 h as top-dressed to TMR. Blood samples were collected 3 times, at 0, 5, and 10 weeks of the experiment, for assessment of hematological and biochemical parameters. For gene study, the longissimus dorsi muscle samples (12 to 13 ribs, approximately 2 g) were collected from each individual by biopsy at end of the study (10 weeks). Growth performance parameters including final BW, average daily gain, and gain to feed ratio, were not different (p > 0.05) between the two groups. Hematological parameters including granulocyte, lymphocyte, monocyte, platelet, red blood cell, hematocrit, and white blood cell showed no difference (p > 0.05) between the two groups except for hemoglobin (p = 0.025), which was higher in the treatment than in the control group. Serum biochemical parameters including total protein, albumin, globulin, blood urea nitrogen, creatinine phosphokinase, glucose, nonesterified fatty acids, and triglyceride also showed no differences between the two groups (p > 0.05). Gene expression related to muscle development (Myogenic factor 6 [MYF6], myogenine [MyoG]), adipose tissue catabolism (lipoprotein lipase [LPL]), and fatty acid transformation indicator (fatty acid binding protein 4 [FABP4]) were increased in the treatment group compared to the control group (p < 0.05). Collectively, supplementation of TRP (65 days in this study) promotes muscle development and increases the ability of the animals to catabolize and transport fat in muscles due to an increase in expressions of MYF6, MyoG, FABP4, and LPL gene.

Effects of the Feeding Levels of Alfalfa on the Intake, Digestibility, Nitrogen and Energy Utilization by Korean Native Goats (Alfalfa의 급여수준이 산양의 섭취량, 소화율과 질소 및 에너지 이용성에 미치는 영향)

  • Lee, I.D.;Lee, H.S.;Kim, D.S.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.1
    • /
    • pp.11-16
    • /
    • 1999
  • This study was conducted to compare the dry matter intake, the digestibility, and utilization of nitrogen and energy of Korean native goats, when fed on orchardgrass(OG) mixed with alfalfa(AA) at a different levels. Experimental diets include three treatments : OG 100%, OG 80%+AA 20%, and OG 60%+AA 40%. With increasing levels of AA supplementation, the content of CP was higher for AA supplemented diets than for OG 100% diets, while the content of NDF, ADF, hemicellulose and lignin content were slightly lower for AA supplemented diets than for OG 100% diets. Also, the DM intake and the digestibility of DM, cellular constituents, NDF and ADF were higher for AA supplemented diets than for OG 100% diets, especially those were the highest in OG 60%+AA 40% diets(P<0.05). The apparently digested N, retained N and biological value of AA supplemented diets were increased with increasing levels of AA supplementation, compared with those of OG 100% diets(P<0.05). The utilization of DE and ME were slightly high in OG 60%+AA 40% diets, but there was no significant difference among all diets. According to the results, DM intake, digestibility and nitrogen utilization were improved in goat fed diets with supplementation AA(AA 20%, 40%), compared with those of OG 100% diets. But energy utilization did not show the difference among diets. Hence, It needs to provides to the adequate energy sources to goats.

  • PDF

Effects of Lonicera japonica extract on performance, blood biomarkers of inflammation and oxidative stress during perinatal period in dairy cows

  • Zhao, Yiguang;Tang, Zhiwen;Nan, Xuemei;Sun, Fuyu;Jiang, Linshu;Xiong, Benhai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1096-1102
    • /
    • 2020
  • Objective: An experiment was conducted to evaluate the effects of Lonicera japonica extract (LJE) on milk production, rumen fermentation and blood biomarkers of energy metabolism, inflammation and oxidative stress during the perinatal period of Holstein dairy cows. Methods: Eighteen Holstein dairy cows were used in a complete randomized design experiment with 3 dietary treatments and 6 cows per treatment. All cows received the same basal total mixed ration (TMR) including a prepartal diet (1.35 Mcal of net energy for lactation [NEL]/kg of dry matter [DM], 13.23% crude protein [CP]) from -60 d to calving and a postpartal diet (1.61 Mcal of NEL/kg of DM, 17.39% CP) from calving to 30 days in milk (DIM). The 3 dietary treatments were TMR supplemented with LJE at 0 (control), 1 and 2 g/kg DM, respectively. LJE was offered from 21 d before calving to 30 DIM. Dry matter intake (DMI) and milk production were measured daily after calving. Milk and rumen fluid samples were collected on 29 and 30 d after calving. On -10, 4, 14, and 30 d relative to calving, blood samples were collected to analyze the biomarkers of energy metabolism, inflammation and oxidative stress. Results: Compared with control diet, LJE supplementation at 1 and 2 g/kg DM increased DMI, milk yield and reduced milk somatic cell count. LJE supplementation also decreased the concentrations of blood biomarkers of pro-inflammation (interleukin-1β [IL-1β], IL-6, and haptoglobin), energy metabolism (nonesterified fatty acid and β-hydroxybutyric acid) and oxidative stress (reactive oxygen metabolites), meanwhile increased the total antioxidant capacity and superoxide dismutase concentrations in blood. No differences were observed in rumen pH, volatile fatty acid, and ammonia-N (NH3-N) concentrations between LJE supplemented diets and the control diet. Conclusion: Supplementation with 1 and 2 g LJE/kg DM could increase DMI, improve lactation performance, and enhance anti-inflammatory and antioxidant capacities of dairy cows during perinatal period.

Effect of Supplementation of Fish and Canola Oil in the Diet on Milk Fatty Acid Composition in Early Lactating Holstein Cows

  • Vafa, Toktam S.;Naserian, Abbas A.;Moussavi, Ali R. Heravi;Valizadeh, Reza;Mesgaran, Mohsen Danesh
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.311-319
    • /
    • 2012
  • This study examined the effects of supplementation of fish oil and canola oil in the diet on milk yield, milk components and fatty acid composition of Holstein dairy cows in early lactation. Eight multiparous early lactation Holstein cows ($42{\pm}12$ DIM, $40{\pm}6kg$ daily milk yield) were fed a total mixed ration supplemented with either 0% oil (Control), 2% fish oil (FO), 1% canola oil +1% fish oil (FOCO), or 2% canola oil (CO) according to a double $4{\times}4$ Latin square design. Each period lasted 3 wk; experimental analyses were restricted to the last week of each period. Supplemental oils were added to a basal diet which was formulated according to NRC (2001) and consisted of 20% alfalfa, 20% corn silage and 60% concentrate. Milk yield was similar between diets (p>0.05), but dry matter intake (DMI) was lower (p<0.05) in cows fed FO diet compared to other diets. Milk fat percentage and daily yield decreased (p<0.01) with the supplementation of fish and canola oil. The daily yield and percentage of milk protein, lactose and solids-not-fat (SNF) were not affected by diets (p>0.05). The proportion (g/100 g fatty acids) of short chain fatty acids (SCFA) decreased and polyunsaturated fatty acids (PUFA) increased (p<0.05) in milk of all cows fed diets supplemented with oil. The proportions of 6:0, 8:0, 10:0 12:0 and 14:0 fatty acids in milk fat decreased (p<0.01) for all diets supplemented with oil, but the proportions of 14:1, 16:0 and 16:1 fatty acids were not affected by diets (p>0.05). The proportion of trans(t)-18:1 increased (p<0.01) in milk fat of cows fed FO and FOCO diets, but CO diet had the highest proportion of cis(c)-11 18:1 (p<0.01). The concentration of t-10, c-12 18:2, c-9 t-11 18:2, 18:3, eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) increased (p<0.05) in FO and FOCO diets in comparison with the other two diets. These data indicate that including fish oil in combination with canola oil significantly modifies the fatty acid composition of milk.

Effects of Dried Leftover Food and Green Tea By-Product on Performance and Egg Quality in Laying Hens (남은 음식물과 녹차 부산물이 산란계의 산란성적과 계란품질에 미치는 영향)

  • Damdinsuren, Unganbayar;Ku, Min jung;Bae, In Hyu;Yang, Chul Ju;Sun, Sang Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.4
    • /
    • pp.121-131
    • /
    • 2006
  • This study was designed to determinate the effects of dried leftover food and green tea by-product on laying hens performance and egg quality in hens. A total of 210 "Tetran Brown" layers 50-weeks of age were assigned to 7 treatments in a completely randomized design. Each treatment had five replicates per treatment with six layers per replication. Seven dietary treatments were a control diet (formula diet) and dried leftover food (DLF) mixed in 10, 20, 30 and 40% to the control diet substituting the corn grain and soybean meal, control diet containing 1.0% GTB without DLF supplementation and control diet containing 30% DLF plus 1.0% GTB supplementation. The trial period was for 8 weeks. The egg production rate of layers was significantly increased in 10, 20 and 40% DLF treatments compared to that of the control treatment (P<0.05). The egg weight was significantly decreased in 10% DLF treatment compared to that of the control (P<0.05). The feed intake of layers was higher in 20% DLF and 30% DLF plus 1.0% GTB treatment than that of the control (P<0.05). The feed conversion ratio significantly decreased in 10% DLF and control plus 1.0% GTB treatments compared to that of the control (P<0.05). The egg yolk cholesterol not varied among the DLF and control treatments (P>0.05). However, the linolenic acid content of egg yolk was significantly increased in DLF and control treatments both containing 1.0% GTB supplementation.

  • PDF

Effects of bamboo leaf extract on the production performance, rumen fermentation parameters, and rumen bacterial communities of heat-stressed dairy cows

  • Li, Yi;Fang, Luoyun;Xue, Fuguang;Mao, Shengyong;Xiong, Benhai;Ma, Zhu;Jiang, Linshu
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1784-1793
    • /
    • 2021
  • Objective: An experiment was conducted to evaluate the effects of bamboo leaf extract (BLE) on the production performance, rumen fermentation parameters, and rumen bacterial communities of heat-stressed dairy cows. Methods: The experiment comprised a 14-day adaptation period and a 21-day experimental period and was conducted in a high-temperature and humidity environment (daily mean ambient temperature = 33.5℃±1.3℃; daily mean relative humidity = 64.9%±0.8%, daily mean temperature-humidity index = 86.2±0.4). Twelve Holstein dairy cows were randomly allocated into two groups. A total mixed ration supplemented with BLE at 0 (CON) and 1.3 g/kg dry matter (DM) were fed, respectively. Feed intake and milk yield were recorded daily. Milk samples were collected on 1, 11, and 21 d of the experimental period to analyze milk performance. Rumen fluid samples were collected on 21 d of the experimental period to analyze rumen fermentation parameters and rumen bacterial communities. Results: Compared with the control group, supplementation of BLE increased milk yield (p<0.01), milk fat yield (p = 0.04), 4% fat-corrected milk (p<0.01) and milk fat content (p<0.01); reduced somatic cell count (p<0.01). No differences in DM intake and milk protein or lactose content were observed between two groups. Supplementation of BLE also increased the rumen total volatile fatty acid (p<0.01), acetate (p<0.01), butyrate (p<0.01), and valerate (p = 0.05) concentrations. However, no significant effects were observed on rumen pH, ammonia nitrogen, propionate, acetate/propionate ratio, isobutyrate, or isovalerate. Furthermore, BLE increased the rumen bacterial abundance and the diversity of the rumen bacterial community. The BLE reduced the Firmicutes/Bacteroidetes abundance ratio and increased the abundances of Butyrivibrio_2 (p<0.01) and Ruminococcus_2 (p<0.01). Conclusion: The BLE supplementation at 1.3 g/kg DM could improve production performance and rumen fermentation in dairy cows during heat stress.

Influence of dietary organic trace minerals on enteric methane emissions and rumen microbiota of heat-stressed dairy steers

  • A-Rang Son;Mahfuzul Islam;Seon-Ho Kim;Sung-Sill Lee;Sang-Suk Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.132-148
    • /
    • 2023
  • Ruminants are the main contributors to methane (CH4), a greenhouse gas emitted by livestock, which leads to global warming. In addition, animals experience heat stress (HS) when exposed to high ambient temperatures. Organic trace minerals are commonly used to prevent the adverse effects of HS in ruminants; however, little is known about the role of these minerals in reducing enteric methane emissions. Hence, this study aimed to investigate the influence of dietary organic trace minerals on rumen fermentation characteristics, enteric methane emissions, and the composition of rumen bacteria and methanogens in heat-stressed dairy steers. Holstein (n=3) and Jersey (n=3) steers were kept separately within a 3×3 Latin square design, and the animals were exposed to HS conditions (Temperature-Humidity Index [THI], 82.79 ± 1.10). For each experiment, the treatments included a Control (Con) consisting of only basal total mixed rations (TMR), National Research Council (NRC) recommended mineral supplementation group (NM; TMR + [Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm]/kg dry matter), and higher concentration of mineral supplementation group (HM; basal TMR + [Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm]/kg dry matter). Higher concentrations of trace mineral supplementation had no influence on methane emissions and rumen bacterial and methanogen communities regardless of breed (p > 0.05). Holstein steers had higher ruminal pH and lower total volatile fatty acid (VFA) concentrations than Jersey steers (p < 0.05). Methane production (g/d) and yield (g/kg dry matter intake) were higher in Jersey steers than in Holstein steers (p < 0.05). The relative abundances of Methanosarcina and Methanobrevibacter olleyae were significantly higher in Holstein steers than in Jersey steers (p < 0.05). Overall, dietary organic trace minerals have no influence on enteric methane emissions in heat-stressed dairy steers; however, breed can influence it through selective alteration of the rumen methanogen community.

Relationships between dietary rumen-protected lysine and methionine with the lactational performance of dairy cows - A meta-analysis

  • Agung Irawan;Ahmad Sofyan;Teguh Wahyono;Muhammad Ainsyar Harahap;Andi Febrisiantosa;Awistaros Angger Sakti;Hendra Herdian;Anuraga Jayanegara
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1666-1684
    • /
    • 2023
  • Objective: Our objective was to examine the relationships of supplemental rumen-protected lysine (RPL) or lysine + methionine (RPLM) on lactational performance, plasma amino acids (AA) concentration, and nitrogen use efficiency of lactating dairy cows by using a meta-analysis approach. Methods: A total of 56 articles comprising 77 experiments with either RPL or RPLM supplementation were selected and analyzed using a mixed model methodology by considering the treatments and other potential covariates as fixed effects and different experiments as random effects. Results: In early lactating cows, milk yield was linearly increased by RPL (β1 = 0.013; p<0.001) and RPLM (β1 = 0.014; p<0.028) but 3.5% fat-corrected milk (FCM) and energy-corrected milk (ECM) (kg/d) was increased by only RPL. RPL and RPLM did not affect dry matter intake (DMI) but positively increased (p<0.05) dairy efficiency (Milk yield/DMI and ECM/DMI). As a percentage, milk fat, protein, and lactose were unchanged by RPL or RPLM but the yield of all components was increased (p<0.05) by feeding RPL while only milk protein was increased by feeding RPLM. Plasma Lys concentration was linearly increased (p<0.05) with increasing supplemental RPL while plasma Met increased (p<0.05) by RPLM supplementation. The increase in plasma Lys had a strong linear relationship (R2 = 0.693 in the RPL dataset and R2 = 0.769 in the RPLM dataset) on milk protein synthesis (g/d) during early lactation. Nitrogen metabolism parameters were not affected by feeding RPL or RPLM, either top-dress or when supplemented to deficient diets. Lactation performance did not differ between AA-deficient or AA-adequate diets in response to RPL or RPLM supplementation. Conclusion: RPL or RPLM showed a positive linear relationship on the lactational performance of dairy cows whereas greater improvement effects were observed during early lactation. Supplementing RPL or RPLM is recommended on deficient-AA diet but not on adequate-AA diet.

Effects of different levels of organic chromium and selenomethionine cocktails in broilers

  • Jaewoo An;Younggwang Kim;Minho Song;Jungseok Choi;Hanjin Oh;Seyeon Chang;Dongcheol Song;Hyunah Cho;Sehyun Park;Kyeongho Jeon;Yunhwan Park;Gyutae Park;Sehyuk Oh;Yuna Kim;Nayoung Choi;Jongchun Kim;Hyeunbum Kim;Jinho Cho
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1226-1241
    • /
    • 2023
  • Selenium (Se) is an essential trace mineral that plays an important role in physiological processes by regulating the antioxidant defense system and enhancing immunity. Chromium is an essential mineral involved in carbohydrate and lipid metabolism and also plays a role in maintaining normal insulin function. Based on these advantages, we hypothesized that the addition of selenomethionine (SeMet) and organic chromium (OC) to broiler diets would increase Se deposition, antioxidant capacity and immune response in meat. Therefore, this study analyzed the effects of OC and SeMet on growh performance, nutrients digestibility, blood profiles, intestinal morphology, meat quality characteristics, and taxonomic analysis of broilers. A total of 168 one-day-old broiler chicken (Arbor Acres) were randomly allotted to 3 groups based on the initial body weight of 37.33 ± 0.24 g with 7 replicate per 8 birds (mixed sex). The experiments period was 28 days. Dietary treatments were folloewd: Basal diets based on corn-soybean meal (CON), basal diet supplemented with 0.2 ppm OC and 0.2 ppm SeMet (CS4), and basal diet supplemented with 0.4 ppm OC and 0.4 ppm SeMet (CS8). Supplementation of OC and SeMet did not affect on growth performance, nutrient digestibility. However, CS8 supplementation increased in duodenum villus height and villus height : crypt depth, and increased in breast meat Se deposition. In addition, CS8 group showed higher uric acid and total antioxidant status than CON group. Taxonomic analysis at phylum level revealed that Proteobacteria and Firmicutes of CS4 and CS8 were lower than CON group. In genus level, the relative abundance of fecal Lactobacillus and Enterococcus of CS4 and CS8 groups were higher than CON group. In short, 0.4 ppm OC and 0.4 ppm SeMet supplementation to broiler diet supporitng positive gut microbiome change, also enhancing antioxidant capacity, and Se deposition in breast meat.