• Title/Summary/Keyword: mixed radiation

Search Result 295, Processing Time 0.021 seconds

Study of Weld Part Status Change by $CO_2$ Welding According to the Variation of Gas Composition and Welding Wire on SS400 Material (가스성분 및 용접와이어의 변화에 따른 SS400소재의 $CO_2$용접에서 용접부의 상태변화 고찰)

  • Kim, Bub-Hun;Kim, Won-Il;Choi, Chang;Park, Yong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.129-136
    • /
    • 2012
  • On this study, $CO_2$ gas, net of Ar gas, and mixed gas in solid wire(AWS ER 70S-6) and flux cored wire(AWS E71T-1) were used to weld on Mild steel(SS400). After the progress, the status changes of the welds in Mild steel(SS400) were investigated with compositional changes. For stable experiments, welding was conducted using the automatic feeder. Radiation testing, hardness testing, chemical composition analysis and penetrated cross-section were measured. Through these experiments, shapes of penetrated cross-section, chemical composition changes, and weld defects according to the variation of welding gas were known. Weld defects and weld cross-sectional shapes by the variation of the welding voltage were also detected.

Numerical Study on Combined Heat Transfer in NIR Dryer for Agricultural and Marine Products (근적외선 농수산물 건조기의 복합열전달특성에 관한 수치적 연구)

  • Choi, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.5 s.118
    • /
    • pp.395-402
    • /
    • 2006
  • Mixed heat transfer in an indirected NIR (Near Infrared Ray) dry chamber was investigated numerical analysis. It is Important that the miked heat transfer effects on double parameters which the Reynolds number and the position of emit lamp. Reynolds number are based on the outer diameter of the cylinder range from 103 to $30{\times}105$. Four difference heat transfer regimes of behavior are apparent: forced convection and radiation on the outer surface of the cylinder, pure conduction, pure natural convection and radiation between lamp surface and inner surface of the cylinder. The temperature and flow patterns are illustrated by iso-contour lines for the double parameters. Also presented are results on the convective heat transfer flux and the radiative heat transfer flux as increased with Reynolds number.

A Numerical Study of the Heat Transfer Characteristics in a Printed Circuit Board (PCB내의 열전달특성에 관한 수치적 연구)

  • Pak, H.Y.;Park, K.W.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.461-472
    • /
    • 1995
  • The interaction of laminar mixed convection and surface radiation in a two-dimensional channel with an array of rectangular blocks is analyzed numerically. Three blocks are maintained at high temperature and the other bottom and top horizontal walls are insulated. Discrete ordinate method(DOM) is introduced to analyze the radiative heat transfer. The effects of the variations of Reynolds number and channel specifications on the heat transfer characteristics are investigated. The average Nusselt numbers along the block surfaces are correlated and presented in terms of Reynolds number and dimensionless geometric parameters such as the block spacing, height and channel spacing. For the conditions considered in this study, average Nusselt numbers along the block surfaces are strongly influenced by the channel spacing and Reynolds number but weakly influenced by the block spacing and block height.

  • PDF

Art therapy using famous painting appreciation maintains fatigue levels during radiotherapy in cancer patients

  • Koom, Woong Sub;Choi, Mi Yeon;Lee, Jeongshim;Park, Eun Jung;Kim, Ju Hye;Kim, Sun-Hyun;Kim, Yong Bae
    • Radiation Oncology Journal
    • /
    • v.34 no.2
    • /
    • pp.135-144
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate the efficacy of art therapy to control fatigue in cancer patients during course of radiotherapy and its impact on quality of life (QoL). Materials and Methods: Fifty cancer patients receiving radiotherapy received weekly art therapy sessions using famous painting appreciation. Fatigue and QoL were assessed using the Brief Fatigue Inventory (BFI) Scale and the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) at baseline before starting radiotherapy, every week for 4 weeks during radiotherapy, and at the end of radiotherapy. Mean changes of scores over time were analyzed using a generalized linear mixed model. Results: Of the 50 patients, 34 (68%) participated in 4 sessions of art therapy. Generalized linear mixed models testing for the effect of time on mean score changes showed no significant changes in scores from baseline for the BFI and FACIT-F. The mean BFI score and FACIT-F total score changed from 3.1 to 2.7 and from 110.7 to 109.2, respectively. Art therapy based on the appreciation of famous paintings led to increases in self-esteem by increasing self-realization and forming social relationships. Conclusion: Fatigue and QoL in cancer patients with art therapy do not deteriorate during a period of radiotherapy. Despite the single-arm small number of participants and pilot design, this study provides a strong initial demonstration that art therapy of appreciation for famous painting is worthy of further study for fatigue and QoL improvement. Further, it can play an important role in routine practice in cancer patients during radiotherapy.

Spectrometry Analysis of Fumes of Mixed Nuclear Fuel (U0.8Pu0.2)O2 Samples Heated up to 2,000℃ and Evaluation of Accidental Irradiation of Living Organisms by Plutonium as the Most Radiotoxic Fission Product of Mixed Nuclear Fuel

  • Kim, Dmitriy;Zhumagulova, Roza;Tazhigulova, Bibinur;Zharaspayeva, Gulzhanar;Azhiyeva, Galiya
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.274-284
    • /
    • 2016
  • Purpose: The purpose of this work is to describe the spectrometric analysis of gaseous cloud formation over reactor mixed uranium-and-plutonium (UP) fuel $(U_{0.8}Pu_{0.2})O_2$ samples heated to a temperature $>2,000^{\circ}C$, and thus forecast and evaluate radiation hazards threatening humans who cope with the consequences of any accident at a fission reactor loaded by UP mixed oxide $(U_{0.8}Pu_{0.2})O_2$, such as a mixture of 80% U and 20% Pu in weight. Materials and methods: The UP nuclear fuel samples were heated up to a temperature of over $2,000^{\circ}C$ in a suitable assembly (apparatus) at out-of-pile experiments' implementation, the experimental in-depth study of metabolism of active materials in living organisms by means of artificial irradiation of pigs by plutonium. Spectrometric measurements were carried out on the different exposed organs and tissues of pigs for the further estimation of human internal exposure by nuclear materials released from the core of a fission reactor fueled with UP mixed oxide. Results: The main results of the research described are the following: (1) following the research on the influence of mixed fuel fission products (radioactive isotopes being formed during reactor operation as a result of nuclear decay of elements included into the fuel composition) on living organisms, the authors determined the quantities of plutonium dioxide ($PuO_2$) that penetrated into blood and lay in the pulmonary region, liver, skeleton and other tissues; and (2) experiments confirmed that the output speed of plutonium out of the basic precipitation locations is very small. On the strength of the experimental evidence, the authors suggest that the biological output of plutonium can be disregarded in the process of evaluation of the internal irradiation doses.

Numerical Study of Interacting Premixed Flames Including Gas Phase Radiation (복사열전달을 고려한 상호작용하는 예혼합화염의 수치해석)

  • 임인권;정석호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.858-867
    • /
    • 1995
  • Characteristics of premixed flames in counter-flow system are numerically studied using a detailed chemical reaction mechanism including gas phase radiation. Without radiation effect accounted, low CO and high NO$_{x}$ emission indices are observed, when strain rate decreases, due to increased residence time and higher flame temperature. Higher NO$_{2}$ production has been also observed when two premixed flames are interacting or cold air stream is mixed with burned gas. The rate of NO$_{x}$ production and destruction is dependent upon the diffusional strength of H and OH radicals, the existence of NO and the concentration of HO$_{2}$. For radiating flames, the peak temperature and NO$_{x}$ production rate decreases as the strain rate decreases. At high strain rate, it is found that the effect of radiation on flame is little due to its negligible radiating volume. It is also found that NO$_{x}$ production from the interacting premixed flame is reduced due to reduced temperature resulting from radiation heat loss. It is concluded that the radiation from gas has significant effect of flame structure and on emission characteristics.ristics.

Development of a wireless radiation detection backpack using array silicon-photomultiplier (SiPM)

  • Kim, Jeong Ho;Back, Hee Kyun;Joo, Koan Sik
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.456-460
    • /
    • 2020
  • In this research, a radiation detection backpack to be used discreetly or by a wide range of users was developed using array silicon-photomultiplier (SiPM) and CsI (Tl), and its characteristics were evaluated. The R-squared value, which indicates the responsiveness of a detector based on the signal intensity, was determined to be 0.981, indicating a good linear responsivity. The energy resolutions for gamma radiation energies of Co-57 (122 keV), Ba-133 (356 keV), Cs-137 (662 keV), and Co-60 (1332 keV) were found to be 13.40, 10.50, 6.77, and 3.16%, respectively. These results confirm good energy resolution characteristics. Furthermore, in the case of mixed sources, the gamma radiation peaks were readily distinguishable, and the R-squared value for energy linearity was calculated to be 0.999, demonstrating an exceptional energy linearity. Further research based on the results of this study would enable the commercialization of lightweight SiPM-based wireless radiation detection backpacks that can be used for longer durations by replacing the photomultiplier tube, which is mainly used as the optical sensor in existing radiation detection backpacks.

Preparation and Characterization of Microorganism Fermentation Celluose as Hydrogel by Radiation Crosslinking (방사선 가교에 의한 미생물 발효 셀룰로오스 하이드로겔의 제조 및 특성)

  • Lim, Youn-Mook;Park, Jong-Seok;Gwon, Hui-Jeong;Nho, Young-Chang;Kim, Sung-Ho;Choi, Young-Hun;Lee, Sun-Yi;Chong, Moo-Sang
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.113-118
    • /
    • 2011
  • Hydrogels from a mixture of poly(N-vinylpyrrolidone) (PVP), ${\kappa}$-carrageenan and microorganism fermentation celluose were prepared by $^{60}Co$ gamma-ray irradiation. PVP and ${\kappa}$-carrageenan were mixed with the different ratios. Microorganism fermentation celluose were added to the mixture of PVP and ${\kappa}$-carrageenan to evaluate the effect of microorganism fermentation celluose on the gel strength. The gel strength of the hydrogel was evaluated for application of a wound dressing. The results showed that gelation and gel strength were increased with increasing the content of the microorganism fermentation celluose.

A Case Study on the Heat budget of the Marine Atmosphere Boundary Layer due to inflow of cloud on observation at Ulleungdo (울릉도에서 구름 유입시 관측한 해양대기경계층의 열수지에 관한 사례연구)

  • Kim, Hee-Jong;Yoon, Ill-Hee;Kwon, Byung-Hyuk
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.629-636
    • /
    • 2004
  • In order to study developments of the marine atmosphere boundary layer in cloud incoming, important parameters like heat advection, surface layer heat flux, and radiation energy were estimated using the rawinsonde, AWS data, satellite images, and buoy data which was installed at the East Sea. We explained the variation and the development of mixed layer in terms of surface layer heat flux and long wave radiation under the cloudy sky. The heat flux was obtained by means of the bulk method. Conservation of heat was analysed by heat budget equation, which was consist of buoy data in the East sea, and sounding data at Ulleungdo and at Pohang. During the inflow of cloud, radiative cooling at the surface after was suppressed and long wave radiation from cloud played a role of warming. The surface layer temperature was also remained warm by influence of warm advection from south-easterly direction. The air temperature in night was increased, as a result, mixed layer was not destroyed and The nocturnal boundary layer was composed of the mixed layer and the residual layer.

Upgrade of Neutron Energy Spectrometer with Single Multilayer Bonner Sphere Using Onion-like Structure

  • Mizukoshi, Tomoaki;Watanabe, Kenichi;Yamazaki, Atsushi;Uritan, Akira;Iguchi, Tetsuo;Ogata, Tomohiro;Muramatsu, Takashi
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.185-190
    • /
    • 2016
  • Background: In order to measure neutron energy spectra, the conventional Bonner Sphere Spectrometers (BSS) are widely used. In this spectrometer, several measurements with different size Bonner spheres are required. Operators should, therefore, place these spheres in several times to a measurement point where radiation dose might be relatively high. In order to reduce this effort, novel neutron energy spectrometer using an onion-like single Bonner sphere was proposed in our group. This Bonner sphere has multiple sensitive spherical shell layers in the single sphere. In this spectrometer, a band-shaped thermal neutron detection medium, which consists of a LiF-ZnS mixed powder scintillator sheet and a wavelength-shifting (WLS) fiber readout, was looped to each sphere at equal angular intervals. Amount of LiF neutron converter is reduced near polar region, where the band-shaped detectors are concentrated, in order to uniform the directional sensitivity. The LiF-ZnS mixed powder has an advantage of extremely high light yield. However, since it is opaque, scintillation photons cannot be collect uniformly. This type of detector shows no characteristic shape in the pulse height spectrum. Subsequently, it is difficult to set the pulse height discrimination level. This issue causes sensitivity fluctuation due to gain instability of photodetectors and/or electric modules. Materials and Methods: In order to solve this problem, we propose to replace the LiF-ZnS mixed powder into a flexible and Transparent RUbber SheeT type $LiCaAlF_6$ (TRUST LiCAF) scintillator. TRUST LiCAF scintillator can show a peak shape corresponding to neutron absorption events in the pulse height spectrum. Results and Discussion: We fabricated the prototype detector with five sensitive layers using TRUST LiCAF scintillator and conducted basic experiments to evaluate the directional uniformity of the sensitivity. Conclusion: The fabricated detector shows excellent directional uniformity of the neutron sensitivity.