• 제목/요약/키워드: mixed force-displacement loading

검색결과 3건 처리시간 0.142초

Performance validation and application of a mixed force-displacement loading strategy for bi-directional hybrid simulation

  • Wang, Zhen;Tan, Qiyang;Shi, Pengfei;Yang, Ge;Zhu, Siyu;Xu, Guoshan;Wu, Bin;Sun, Jianyun
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.373-390
    • /
    • 2020
  • Hybrid simulation (HS) is a versatile tool for structural performance evaluation under dynamic loads. Although real structural responses are often multiple-directional owing to an eccentric mass/stiffness of the structure and/or excitations not along structural major axes, few HS in this field takes into account structural responses in multiple directions. Multi-directional loading is more challenging than uni-directional loading as there is a nonlinear transformation between actuator and specimen coordinate systems, increasing the difficulty of suppressing loading error. Moreover, redundant actuators may exist in multi-directional hybrid simulations of large-scale structures, which requires the loading strategy to contain ineffective loading of multiple actuators. To address these issues, lately a new strategy was conceived for accurate reproduction of desired displacements in bi-directional hybrid simulations (BHS), which is characterized in two features, i.e., iterative displacement command updating based on the Jacobian matrix considering nonlinear geometric relationships, and force-based control for compensating ineffective forces of redundant actuators. This paper performs performance validation and application of this new mixed loading strategy. In particular, virtual BHS considering linear and nonlinear specimen models, and the diversity of actuator properties were carried out. A validation test was implemented with a steel frame specimen. A real application of this strategy to BHS on a full-scale 2-story frame specimen was performed. Studies showed that this strategy exhibited excellent tracking performance for the measured displacements of the control point and remarkable compensation for ineffective forces of the redundant actuator. This strategy was demonstrated to be capable of accurately and effectively reproducing the desired displacements in large-scale BHS.

PSD를 이용한 혼합모드 하중하에서 탄소성 파괴인성평가에 관한 실험적인 연구 (An Experimental Study on the Evaluaiton of Elastic-Plastic Fracture Toughness under Mixed Mode I-II-III Loading Using the Optical PSD)

  • 김희송;이춘재
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1263-1274
    • /
    • 1996
  • In this paper, as elastic-plastic fracture toughness test under mixed mode loading was proposed using a single edge-cracked specimen subjected to bending moment(M), shearing force(F), and twisting moment(T). The J-integral of a crack in the specimen is expressed in the form J=$J_I$+ $J_II$$J_III$, where $J_I$, $J_II$ and $J_III$ are the components of mode I, mode II and mode III deformation, respectively. $J_I$, $J_II$ and $J_III$ can be estimated from M-$\theta$ ($\theta$;crack opening angle), F-U(U; crack shear displacement) and T-$\alpha$ ($\alpha$;crack twisting angle). In order to obtain the the M<-TEX>$\theta$, F-U and T-$\alpha$ diagram inreal time, a new deformaiton gage for mixed mode loading was proposed using the optical position sensing device(PSD). The elastic-plastic fracture toughness test was carried out with an aluminum alloy. The loading apparatus was designed and manufactured for this experiment. For the loading condition of the crack initatio in the mixed mode, the MMT -3(mode I+ mode II+ mode III) has the lowest values out of the all specimens. This implies that MMT-3 is possible of the crackinitation at lower load, if the specimen acts on together with the torque under the same loading condition. An elastic-plastic fracture toughness test using the PSD brings a successful experimentation in measuring the crack deformation(mode I+ mode II+ mode III).

혼합구조의 성능 향상을 위한 개선된 접합부의 개발 (II): 개선된 접합방식의 성능확인을 위한 모형실험 및 해석 (Developments of Advanced Connection Type for Improvements of Mixed Structures (II))

  • 윤익중;노병철;김문겸;조성용
    • 대한토목학회논문집
    • /
    • 제28권2A호
    • /
    • pp.207-214
    • /
    • 2008
  • 본 논문에서는 연계논문에서 제안된 혼합구조 접합부의 개선정도를 확인하기 위하여 2개의 혼합구조 실험체에 대하여 4절점 휨시험을 수행하였다. 혼합구조 접합부의 거동 분석을 위하여 3차원 비선형해석 결과와 실재하 실험 결과를 하중-처짐 관계, 하중-변형률 관계, 접합부 개구폭, 균열과 파괴모드를 통하여 비교하였다. 3차원 비선형 해석을 위하여 접촉요소를 사용하였으며 해석프로그램은 범용 구조 해석프로그램인 아바쿠스를 이용하였다. 실험과 해석의 결과로부터 제안된 L 모양의 접합부가 휨하중에서 기존안보다 강성이 크게 나타났으며, 보다 나은 구조적 성능을 나타냄을 확인하였다.