• 제목/요약/키워드: mixed cathode material

검색결과 63건 처리시간 0.031초

Synthesis of Multi-component Olivine by a Novel Mixed Transition Metal Oxalate Coprecipitation Method and Electrochemical Characterization

  • 박영욱;김종순;권혁조;서동화;김성욱;홍지현;강기석
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.37.1-37.1
    • /
    • 2010
  • The multi-component olivine cathode material, $LiMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$, was prepared via a novel coprecipitation method of the mixed transition metal oxalate, $Mn_{1/3}Fe_{1/3}Co_{1/3}(C_2O_4){\cdot}2H_2O$. The stoichiometric ratio and distribution of transition metals in the oxalate, therefore, in the olivine product, was affected sensitively by the environments in the coprecipitation process, while they are the important factors in determining the electrochemical property of electrode materials with multiple transition metals. The effect of the pH, atmosphere, temperature, and aging time was investigated thoroughly with respect to the atomic ratio of transition metals, phase purity, and morphology of the mixed transition metal oxalate. The electrochemical activity of each transition metal in the olivine synthesized through this method clearly was enhanced as indicated in the cyclic voltammetry (CV) and galvanostatic charge/discharge measurement. Three distinctive contributions from Mn, Fe, and Co redox couples were detected reversibly in multiple charge and discharge processes. The first discharge capacity at the C/5 rate was $140.5\;mAh\;g^{-1}$ with good cycle retention. The rate capability test showed that the high capacity still is retained even at the 4C and 6C rates with 102 and $81\;mAh\;g^{-1}$, respectively.

  • PDF

발광층에 Dotted-Line Doping Structure(DLDS)를 적용한 Red-Oranic Light-Emitting Diodes(OLEDs)의 발광특성

  • 이창민;한정환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.177-180
    • /
    • 2004
  • 발광층에 Alq3와 rubrene을 mixed host로 사용하고 DCJTB를 형광 dopant로 사용한 다층 박막 구조의 red OLEDs를 제작하였다. 소자의 구조는 $ITO:Anode(120nm)/{\alpha}-NPD:HTL(40nm)/Alq_3+Rubrene(mixed\;host\;1:1)+DCJTB(red\;dopant\;3%)+:EML(20nm)/Alq_3:ETL(40nm)/MgAg(Mg\;5%\;wt):Cathode(150nm)$ 로서 EML내부에 DCJTB를 Totally Doping Method와 Dotted-Line Doping Method의 두 가지 방법으로 도핑 하였다. Mixed host구조에 DCJTB를 6구간으로 나누어 Dotted Line Doping한 소자는 luminance yield가 $9.2cd/A@10mA/cm^2$ 이었다. 이 소자는 DCJTB만을 Totally Doping한 소자의 luminance yield $3.2cd/A@10mA/cm^2$에 비해 약 190%정도의 높은 효율 향상을 보였다. 또한 $10mA/cm^2$에 도달하는 전압은 5.5V Vs. 8.5V로서 mixed host를 사용한 소자에서 약 3V정도 구동전압이 낮아지는 효과가 있었다. 발광 스펙트럼의 Full Width Half Maximum(FWHM)은 각각 56.6nm와 61nm로서 rubrene을 mixed host로 사용한 소자에서 높은 색 순도를 얻을 수 있었다. 이러한 성능의 향상은 $Alq_3$와 혼합된 rubrene에 의한 낮은 전하주 입장벽, 높은 전류밀도에서 나타나는 발광감쇄현상의 감소, 그리고 발광층의 DLD구조에 의한 전하의 trap & confinement 에 따른 발광 exciton의 형성확률이 증가한데서 나타났다고 생각된다.

  • PDF

Preparation and Cyclic Performance of Li1.2(Fe0.16Mn0.32Ni0.32)O2 Layered Cathode Material by the Mixed Hydroxide Method

  • Karthikeyan, K.;Nam, K.W.;Hu, E.Y.;Yang, X.Q.;Lee, Y.S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.1995-2000
    • /
    • 2013
  • Layered $Li_{1.2}(Fe_{0.16}Mn_{0.32}Ni_{0.32})O_2$ was prepared by the mixed hydroxide method at various temperatures. Xray diffraction (XRD) pattern shows that this material has a ${\alpha}-NaFeO_2$ layered structure with $R{\bar{3}}m$ space group and that cation mixing is reduced with increasing synthesis temperature. Scanning electron microscopy (SEM) reveals that nano-sized $Li_{1.2}(Fe_{0.16}Mn_{0.32}Ni_{0.32})O_2$ powder has uniform particle size distribution. X-ray absorption near edge structure (XANES) analysis is used to study the local electronic structure changes around the Mn, Fe, and Ni atoms in this material. The sample prepared at $700^{\circ}C$ delivers the highest discharge capacity of 207 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ with good capacity retention of 80% after 20 cycles.

A Novel Sulphur Cathode Materials for Rechargeable Lithium Batteries

  • Jin, Bo;Park, Kyung-Hee;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권4호
    • /
    • pp.157-160
    • /
    • 2007
  • Lithium-sulphur batteries were fabricated in a dry room, and their electrochemical properties were analyzed by scanning electron microscopy (SEM), cyclic voltammetry (CV), and charge-discharge tests. SEM results showed that sulphur and nanocarbon powders were mixed homogeneously, and sulphur powders were enwrapped by a large amount of carbon powders. The charge-discharge test results demonstrated that the lithium-sulphur battery displayed excellent reversibility and cycling performance, which supplied a discharge capacity of $788.1mAh\;g^{-1}$ at the first cycle and $796.4mAh\;g^{-1}$ after 71 cycles at room temperature, respectively.

폐이차전지 블랙 매스(Black Mass) 구성 성분의 열중량 특성 분석 (Thermogravimetric Analysis of Black Mass Components from Li-ion Battery)

  • 김관호;유광석;김민규;이훈
    • 자원리싸이클링
    • /
    • 제32권6호
    • /
    • pp.25-33
    • /
    • 2023
  • 이차전지 산업의 성장과 함께 이차전지의 생산량과 사용량의 급격한 증가가 예상되며, 이와 맞물려 생산 스크랩을 포함한 폐이차전지의 재활용에도 많은 관심과 노력이 이루어지고 있다. 그동안 폐이차전지 재활용은 양극재를 중심으로 많은 노력이 이루어졌지만, 핵심 광물의 공급망 확보와 재활용률 향상을 위해 음극재의 재활용에도 많은 관심이 기울이기 시작하였다. 음극재의 주성분인 흑연 분석을 위해 석탄의 함량을 측정하는 공업분석이 활용될 수 있지만, 기존의 석탄 분석에 활용되는 공업분석 방법은 블랙 매스의 구성 성분 간의 상호작용으로 인해 정확한 측정이 불가능하다. 이에 본 연구에서는 산소 분위기에서 950℃까지의 온도 상승에 따른 블랙 매스 각 성분의 열중량 변화를 측정하였다. 측정 결과 양극재의 경우에는 양극재에 포함된 바인더와 도전재의 산화에 의한 약 5%의 질량 감소 이외에는 질량 변화가 측정되지 않았으며, 음극재의 경우에는 약 2%의 바인더에 의한 질량 감소 이외에는 모두 고정 탄소에 의한 질량 감소로 측정되었다. 또한 블랙 매스에 함유될 수 있는 금속 전극(Al, Cu)들은 온도가 상승함에 따라 산화되어 질량이 증가하는 현상이 관찰되었다. 다양한 혼합 비율의 양극재/음극재 혼합 시료의 열중량 변화 측정 결과는 양극재와 음극재 각각의 열중량 변화를 통해 계산할 수 있는 예측값과 유사한 결과를 보여, 블랙 매스의 열중량 특성 변화를 통해 음극재의 함량 도출이 가능할 수 있음을 확인하였다.

Carbon nanotube / silane hybride film for highly efficient field emitter

  • ;;;;이건웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.181-181
    • /
    • 2010
  • Few-walled carbon nanotubes (FWNTs)-based field emitters with long term stability are fabricated by using a spray method. Tetraethylorthosilicate (TEOS) sol as a binder was mixed with dispersed solution of FWNTs to enhance the adhesion of FWNTs on the cathode substrate. Due to the strong intermolecular interaction of TEOS to the functional groups attached on CNTs and substrate, CNTs are tightly adhered to the cathode electrode when heat treatment is performed at $150^{\circ}C$ for 1 hour, resulting in a stable electron emission of CNT emitters for long time. Excellent field emission characteristics were exhibited, with a large field enhancement factor and low turn-on voltage, comparable to those of CNT emitters fabricated by a screen printing of CNT paste. Therefore, FWNTs / TEOS hybrid films could be utilized as an alternative for the efficient and reliable field emitters.

  • PDF

흑연화 MPCF 부극을 이용한 Li ion 2차전지의 충방전 특성 (Charge-discharge behaviour of lithium ion secondary battery using graphitized mesophase pitch-based carbon fiber anodes)

  • 김상필;박정후;조정수;윤문수;김규태
    • 전기화학회지
    • /
    • 제1권1호
    • /
    • pp.14-17
    • /
    • 1998
  • MPCF는 Li ion 2차전지용 부극 활물질로 연구되고 있다. 흑연화 MPCF는 높은 방전 용량과 우수한 충방전 효율을 가진다. $0\~1$ V전위영역에서 25 mA/g의 정전류로 충방전할 때의 MPCF/Li전지의 초기 방전 용량은 300 mAh/g이며, 충방전 효율은 $90\%$ 이상을 나타낸다. $LiCoO_2$을 정극 활물질로, 혼합 탄소재료를 부극 활물질로 사용하여 원통형 Li ion 2차전지를 제작하였다. Li ion 2차전지의 수명 특성을 향상하기 위하여, 흑연화 MPCF에 이종 탄소 재료를 $10 wt\%$ 혼합하였다. 혼합 탄소재료를 사용한 Li ion 2차전지의 수명 성능은 흑연화 MPCF만을 사용한 전지보다 우수하였다.

전계방출광원에서 전도성 입자를 이용한 고효율 형광막 특성 연구 (Study on high efficient phosphor layer using conductive powder particle in field emission light source)

  • 정세정;김광복;이선희;김용원
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.3-6
    • /
    • 2007
  • The Light brightness is to enhance the luminescence efficiency of phosphor including conductive material. In preparing the anode layer, phosphors mixed with conductive material prepared with pastes of polymer resin using by screen printing method. When the prepared anode layer bombarded by cold electron from emitter of cathode, it give rise to form the secondary electron from those of conductive materials such as ITO powder. Furthermore, we are expect to enhance the luminescence efficiency more than without conductive material.

  • PDF

HTL:EML(DPVBi:NPB)층의 조성비 변화에 따른 청색 유기 발광 소자 개발 (Development of Blue Organic Light-emitting Diodes(OLEDs) Due to Change in Mixed Ratio of HTL:EML(DPVBi:NPB) Layers)

  • 이태성;이병욱;홍진수;김창교
    • 한국전기전자재료학회논문지
    • /
    • 제21권9호
    • /
    • pp.853-858
    • /
    • 2008
  • The structure of organic light-emitting diodes(OLEDs) with typical heterostructure consists of anode, hole injection layer, hole transport layer, light-emitting layer, electron transport layer, electron injection layer, and cathode. 4,4bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl(NPB) used as a hole transport layer and 4'4-bis(2,2'-diphenyl vinyl)-1,1'-biphenyl(DPVBi) used as a blue light emitting layer were graded-mixed at selected ratio. Interface at heterojunction between the hole transport layer and the elecrtron transport layer restricts carrier's transfer. Mixing of the hole transport layer and the emitting layer reduces abrupt interface between the hole transport layer and the electron transport layer. The operating voltage of OLED devices with graded mixed-layer structure is 2.8 V at 1 $cd/m^2$ which is significantly lower than that of OLED device with typical heterostructure. The luminance of OLED devices with graded mixed-layer structure is 21,000 $cd/m^2$ , which is much higher than that of OLED device with typical heterostructure. This indicates that the graded mixed-layer enhances the movement of carriers by reducing the discontinuity of highest occupied molecular orbital(HOMO) of the interface between hole transport layer and emitting layer.

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • 윤원섭;이상우
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF