• Title/Summary/Keyword: mixed building technology

Search Result 164, Processing Time 0.025 seconds

Investigating risk of overheating for school buildings under extreme hot weather conditions

  • Lykartsis, Athanasios;B-Jahromi, Ali;Mylona, Anastasia
    • Advances in Energy Research
    • /
    • v.5 no.4
    • /
    • pp.277-287
    • /
    • 2017
  • This study examines the risk of overheating of a school building, under extreme hot weather conditions, in 14 locations in the United Kingdom using the overheating criteria defined in Building Bulletin 101 (BB101). The building was modelled as naturally ventilated, mechanically ventilated and in mixed mode and was simulated both for the current and the projected weather conditions of the 2050s. Under the current weather conditions, results of the simulations show that when naturally ventilated, the school building fulfils the BB101 criteria only in the areas of Edinburgh and Glasgow. In the simulations of the building as mechanically ventilated and in mixed mode, mechanical cooling was provided in order for the building to comply with the overheating criteria. A comparison of the required cooling loads between the two scenarios shows that application of mixed mode ventilation results in less cooling loads.

Semi-continuous beam-to-column joints at the Millennium Tower in Vienna, Austria

  • Huber, Gerald
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.159-170
    • /
    • 2001
  • The Millennium Tower is situated to the north of the center of Vienna. With a height of 202 m it is the highest building in Austria. Realization was improved by new methods. The tower is a typical example of mixed building technology, combining composite frames with a concrete core. Special attention has been paid to the moment connections between the slim floors and the column tubes resulting in a drastically reduced construction time and thin slabs. The semi-continuity has been considered in the design at ultimate and serviceability limit states.

The Quality Status of Aggregate for Domestic Ready-mixed Concrete and the Effect of Aggregate Quality in Concrete

  • Kim, Yong-Ro;Lee, Jae-Hyun;Min, Choong-Siek;Park, Jong-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • This research examined the effect of the quality of aggregate on concrete workability and compressive strength through an investigation into regional aggregate used in domestic ready mixed concrete plants. Through the research, it was found that aggregate for ready mixed concrete shows poor quality overall. The main factor of deterioration in the quality of the concrete is the particle size of fine aggregate and fine particle content in coarse aggregate. The quality of aggregate significantly influences concrete's workability, which is defined based on 0.08mm passage related with powder and absorption. In addition, poor aggregate quality leads to increased water content in concrete to secure workability, which is related with a decline in the compressive strength and durability of concrete.

Steel-concrete mixed building technology at the ski jump tower of Innsbruck, Austria

  • Aste, Christian;Glatzl, Andreas;Huber, Gerald
    • Steel and Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.141-152
    • /
    • 2003
  • The ski jump in Innsbruck known for the famous annual New Year "Four-ski-jump-tournament" has been fully renewed. The original jumping tower (built for the 1976 Olympic winter games) was fully pulled down and a new landmark similar to a lighthouse has been erected located on a small hill at the border of the city. Zaha Hadid(London) won the international architectural competition for this significant building. The constructional realisation has been ordered from Aste Konstruktion and has been finally honoured with the Austrian state award for consulting 2002. After a very strict timetable the building was already handed restaurant at the top.

Evaluation on the Cooling Performance of Geothermal-energy Using Heat Pump System in Mixed-use Residential Building (주상복합 건축물에 적용된 지열이용 히트펌프 시스템의 냉방성능 평가)

  • Kim, Yong-Shik;Kim, Jung-Heon;Hwang, Kwang-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.9-16
    • /
    • 2006
  • Geothermal-energy has been getting popular as a natural energy source for green buildings these days. Public building with gross area more than $3000m^2$, planned after March, 2005, should spend about 5% of total building cost for equipment run by natural energy source (e.g. geothermal, solar heat, solar power, etc) according to renewable energy promotion law in Korea. As a result geothermal-energy using heat pump system is emerging as a effective alternative for realistic and economic plan although design guidelines and construction code for the system is in progress and technical data is far from sufficient. The quantitative analysis on the performance of geothermal-energy using heat pump system is insufficient for appropriate design of it. In this paper, cooling performance of geothermal-energy using heat pump system of residential and retail etc. mixed-use building has been analyzed on the basis of temperature comparison between inlet and outlet of heat exchangers of the operating system. Additionally, dry-bulb temperature and relative humidity have been measured and analyzed together as an index of indoor thermal environment.

Analysis of the Economic Effect of the Construction Industry and the Cost-benefit Analysis of the Recycled Aggregate Production Industry According to the Use of High-quality Recycled Aggregate (고품질 순환골재 활용에 따른 건설 산업의 경제적 효과 및 순환골재 생산 산업의 비용 편익 분석)

  • Choi, Won-Young;Jeon, Chan-Soo;Kim, Sang-Heon;Kim, Tae-Hyoung;Jeon, Duk-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.483-491
    • /
    • 2021
  • The purpose of this study is to analyze the economic effect of the use of recycled aggregate on the construction industry and the effect of increasing the value of the recycled aggregate production industry on the premise of supporting quality assurance technology to promote the high-quality use of recycled aggregate. Accordingly, the production cost of ready-mixed concrete that can be obtained through the use of high-quality recycled aggregate is analyzed according to the recycled aggregate application rate recommended in the recycled aggregate quality standard, The economic effect of general ready-mixed concrete and recycled aggregate-applied rea dy-mixed concrete industry wa s a na lyzed by identifying the domestic rea dy-mixed concrete industry sca le a nd the ra te of satisfaction of recycled aggregate volume, and a cost-benefit analysis method was used to examine the benefits of high-quality recycled aggregate production and sales. As a result, the production cost of ready-mixed concrete is reduced by 2.3~16.2% depending on the application rate, the economic effect of the use of recycled aggregate on the construction industry is about 106.8~142.6 billion KRW, and the effect of increasing the value of the recycled aggregate production industry generated about 1.22 times the benefit.

Numerical Evaluation of Forces on TBM during Excavation in Mixed Ground Condition by Coupled DEM-FDM (개별요소법 및 유한차분법 연계 모델을 활용한 복합지반 TBM 굴진 시 TBM에 작용하는 힘의 수치해석적 분석)

  • Choi, Soon-Wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2021
  • Forces exerted on a shield TBM (tunnel boring machine) such as cutter head torque, thrust force, chamber pressure, and upward force are key factors determining TBM performance. However, the forces acting on the TBM when tunnelling the mixed ground have different tendencies compared to that of the uniform ground, which could impair TBM performance. In this study, the effect of mixed ground tunnelling was numerically investigated with torque, thrust force, chamber pressure, and upward force. A coupled discrete element method (DEM) and finite difference method (FDM) model for TBM driving model was used. This numerical study simulates TBM tunnelling in mixed ground composed of upper weathered granite soil and lower weathered rock. The effect on the force acting on the TBM according to the location and slope of the boundary of the mixed ground was numerically examined.

Evaluation of critical tractive forces of vegetation mats enhanced with biopolymer mixed soil (바이오폴리머 혼합토와 결합된 식생매트의 한계 소류력 평가)

  • Lee, Du Han;Kim, Myounghwan
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.167-179
    • /
    • 2020
  • Recently, new levee material has been developed to enhance natural soil strength and vegetation growth using biopolymer. In the study, critical tractive force of vegetated mats mixed with biopolymer mixed soil has been evaluated to apply the mixed soil to levee construction material. The mixed soil has been produced by mixing beta-glucan, clay, and sand. Full scale test bodies have been constructed with 3 cm thick of the mixed soil. Total 4 test bodies have been constructed and experimented. Critical tractive forces have been evaluated by observation and measurement of failure conditions and soil loss. Although performance of the vegetated revetments are affected by vegetation coverage conditions, the critical tractive forces are shown about 40 N/㎡ and the critical velocities are shown about 4 m/sec by full scale experiment. Erosion resistance is also enhanced by combination of root and net with mat materials.

A Study on Mixed Construction of Platform of Baikje (백제(百濟) 혼축기단(混築基壇)의 연구(硏究))

  • Cho, Weon-Chang
    • Journal of architectural history
    • /
    • v.15 no.2
    • /
    • pp.77-94
    • /
    • 2006
  • "Mixed construction of platform" means the platform which was constructed by mixing heterogeneous materials such as roof tiles or bricks with divided stone of trimmed stone. This kind of construction technique was not known or found from the building sites of Goguryo or Silla so far and therefore it used to be understood as a unique platform construction technique or the product of technology and creativeness of Baikje's craftsman. The mixed construction of platform of Baikje came to position itself as one of the patterns of platform mainly used over Sabi period and we found the pattern from the sites including Imryugak site in Gongju, temple for royal tomb in Gwanbuk-ri, Wangheungsa Temple site, building site in Keumseong Mountain, Ohapsa Temple site in Byryeong. From the fact that they used a variety of materials which they could easily get around them such as roof tiles or bricks in addition to stones for the construction of platforms, we can see the feasibility and decoration characteristics of their material supply at that time. On the other hand, this mixed construction of platform was not popular in Goguryo and Silla, the major reason for which is judged to be non-existence of platforms to construct using bricks or roof tiles which could be constructed together with platform using divided stones. This is supported by the results of excavation of Hwangryongsa Temple site, Bunhwangsa Temple site, Heungryunsa Temple site of Silla which gave us comparatively abundant excavation data, and Jeongreungsa Temple site, Cheongamsa Temple site, Toseongrisa Temple site and building site in Daeseong Mountain castle and Anhak Palace site of Goguryo. For further progressive study on the mixed construction of platform of Baikje in the future, we will have to review more on the social background and technical background with the linkage with archeology and architecture at that time which led to the creation of such platform.

  • PDF

Rapid microcement and glycidylacrylate a Case Study on the Improvement of Water Leakage Site Applied to Mixed-use (급결마이크로시멘트 및 글리시딜아크릴레이트를 복합 적용한 누수현장 보수사례)

  • Cho, Il-Kyu;Yuh, Jae Hyung;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.241-242
    • /
    • 2019
  • This technology is a water leak repair technology using composite materials of concrete structures that block leakage of structures by injecting rapid microcement into the face of underground concrete to block water and injecting flexible glycidylacrylate. Rapid micro cement system repair materials are mixed with fine fibers to improve the flexural sensitivity of the material and to form a layer that blocks stabilized water at the back of the structure by allowing rapid and tight spatial filling during injection with high cohesion The glycidylacrylate repair material can control the expansion rate, and the external stress also has the characteristic that the form of the material is not destroyed or separated, which can also be applied to vibrating induced structures that produce repetitive fatigue loads, and has an effective durability in saline, alkali, acid (chloric acid, sulfuric acid, nitric acid).

  • PDF