• 제목/요약/키워드: mixed anion layered compounds

검색결과 2건 처리시간 0.018초

Corrosion Protection from Inhibitors and Inhibitor Combinations Delivered by Synthetic Ion Exchange Compound Pigments in Organic Coatings

  • Chrisanti, S.;Ralston, K.A.;Buchheit, R.G.
    • Corrosion Science and Technology
    • /
    • 제7권4호
    • /
    • pp.212-218
    • /
    • 2008
  • Inorganic ion exchange compounds (IECs) including hydrotalcites and bentonite clays are a well known classes of layered mixed metal hydroxides or silicates that demonstrate ion exchange properties. These compounds have a range of applications from water purification to catalyst supports. The use of synthetic versions of these compounds as environmentally friendly additives to paints for storage and release of inhibitors is a new and emerging application. In this paper, the general concept of storage and release of inhibiting ions from IEC-based particulate pigments added to organic coatings is presented. The unique aspects of the IEC structure and the ion exchange phenomenon that form the basis of the storage and release characteristic are illustrated in two examples comprising an anion exchanging hydrotalcite compound and a cation exchanging bentonite compound. Examples of the levels of corrosion protection imparted by use of these types of pigments in organic coatings applied to aluminum alloy substrates is shown. How corrosion inhibition translates to corrosion protection during accelerated exposure testing by organic coatings containing these compounds is also presented.

Thermal Transport Properties of a Mixed Anion Layered Compound, Polycrystalline LaCu1-δS0.5Se0.5O (δ = 0 .0 1)

  • Nobuhiko Azuma;Hiroki Sawada;Hirotaka Ito;Ryosuke Sakagami;Yuya Tanaka;Tatsuhide Fujioka;Masanori Matoba;Yoichi Kamihara
    • 한국재료학회지
    • /
    • 제34권10호
    • /
    • pp.464-474
    • /
    • 2024
  • Electrical and thermal transport properties of a polycrystalline carrier-doped wide-gap semiconductor LaCu1-δS0.5Se0.5O (δ = 0.01), in which the CuCh (Ch = S, Se) layer works as conducting layer, were measured at temperatures 473~673 K. The presence of δ = 0.01 copper defects dramatically reduces the electrical resistivity (ρ) to approximately one part per million compared to that of δ = 0 at room temperature. The polycrystalline δ = 0.01 sample exhibited ρ of 1.3 × 10-3 Ωm, thermal conductivity of 6.0 Wm-1 K-1, and Seebeck coefficient (S) of 87 µVK-1 at 673 K. The maximum value of the dimensionless figure of merit (ZT) of the δ = 0.01 sample was calculated to be 6.4 × 10-4 at T = 673 K. The ZT value is far smaller than a ZT ~ 0.01 measured for a nominal LaCuSeO sample. The smaller ZT is mainly due to the small S measured for LaCu1-δS0.5Se0.5O (δ = 0.01). According to the Debye model, above 300 K phonon thermal conductivity in a pure lattice is inversely proportional to T, while thermal conductivity of the δ = 0.01 sample increases with increasing T.