• Title/Summary/Keyword: mixed aggregate

Search Result 360, Processing Time 0.03 seconds

Permeability and Freeze-Thaw Resistance of Latex Modified Concrete (라텍스 개질 콘크리트의 투수성 및 동결융해 저항 특성)

  • 김기헌;이종명;홍창우;윤경구
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.484-490
    • /
    • 2001
  • This study focused on the investigation of durability of latex modified concrete in the points of chloride ion permeability and freeze-thaw resistance as latex content variated such as 5%, 10%, 15% and 20%. When latex was mixed in concrete and cured, the concrete consisted of hydrated cement and aggregate interconnected by a film of latex particles. An increasing the amount of latex produced concrete with increased flexural strength, but with slightly lower compressive strength. The increase in flexural strength might be attributed to the latex films between the hydrated cement and aggregates, and the decrease in compressive strength to the flexibility of the latex component named by Butadiene. The rapid chloride permeability test was used to evaluate the relative permeability of latex-modified concretes and conventional concretes. The results showed that the permeability of latex-modified concretes was considerably lower than conventional concretes tested, which might be due to the latex filled in voids and interconnections of hydrated cement and aggregates by a film of latex particles. The freeze-thaw resistance of LMC was quite good comparing to conventional concrete. Air entraining agent has been used in conventional concrete to improve the freeze/thaw resistance, but latex modified concrete does not need additional air entraining agent for freeze-thaw resistance provided adequate cure occurs.

Evaluation of Aging Characteristics of Selected PMA using HP-GPC (HP-GPC를 이용한 폴리머개질 아스팔트의 노화특성 분석)

  • Kim, Kwang-Woo;Doh, Young-Soo;Amerkhanian, Serj N.
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.15-24
    • /
    • 2004
  • Oxidation causes increment of the quantity of large molecular size or LMS in asphalt and is a major reason for hardening of asphalt binder. An extended service life of pavement on a road is expected by reducing oxidation of binder. Oxidation of binder occurs during hot mixing with aggregates before placement on road and then during in-service after the asphalt pavement is constructed. Quantitative increase of LMS as result of aging after RTFO and PAV was analyzed based on the data from high-pressure gel-permeation chromatography (HP-GPC). Polymer modified asphalt (PMA) after RTFO procedure showed 20-30% increment in LMS and then after PAV procedure more than twice, although the percentage of increment was different according to asphalt brand and grade. The PMAs containing LDPE or SBS, which showed a great mechanical property improvement in previous studies, were selected for characterizing PMA aging In this study. Considerably reduced increment of LMS was observed from the PMA containing LDPE after RTFO and PAV procedures. The GPC result showing the binder with less LMS increment means that the asphalt while being mixed with LDPE was aged less during the aging treatment. The dispersed particle of LDPE in asphalt cement seems to disturb oxidative aging reaction and evaporation.

  • PDF

Changes of Soil Physical Properties by Glomalin Concentration and Rice Yield using Different Green Manure Crops in Paddy (녹비작물 환원 시 Glomalin 함량에 따른 토양물리성 및 벼 수량 변화)

  • Jeon, Weon-Tai;Seong, Ki-Yeong;Kim, Min-Tae;Oh, Gye-Jeong;Oh, In-Seok;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.119-123
    • /
    • 2010
  • This experiment was conducted at Sinheung series (fine loamy, mixed, nonacid, mesic family of Fluvaquentic Endoaquepts) in 2007 to 2008 at the National Institute of Crop Science (NICS), RDA, Suwon, Gyeonggi province, Korea. Three kinds of green manure crops (hairy vetch, barley, rye) incorporated in soil for rice cultivation. 6.3 kg N $10a^{-1}$, and3.2 kg $P_2O_5$ $10a^{-1}$ were applied to rye and barley plot before rice transplanting. Chemical fertilizers had not been applied to hairy vetch plot. Glomalin concentration, soil bulk density, and porosity were measured in soil from different green manure crops incorporation after rice harvesting in paddy. Soil bulk density and porosity after rice harvesting improved at surface soil of hairy vetch incorporation plot. Degree of water stable aggregates increased all green manure incorporation plots. Glomalin concentrations significantly increased at hairy vetch incorporation treatment. In barley plot, the concentration of glomalin increased at 10-20 soil depth. There were no differences relationship between soil carbon, and glomalin concentration, but relationship between soil aggregate stability, and glomalin concentration significantly positive under green manure crop-rice cropping system. Rice yield decreased at hairy vetch incorporation plot because of field lodging. We suggested that hairy vetch incorporation should be considered about application amount, and water management using rice cultivation because of soil properties changes.

Early Prediction of Concrete Strength Using Ground Granulated Blast Furnace Slag by Hot-Water Curing Method (열수양생법에 의한 고로슬래그미분말 혼합 콘크리트의 강도 추정)

  • Moon Han-Young;Choi Yun-Wang;Kim Yong-Gic
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.102-110
    • /
    • 2004
  • Recently, production cost of ready mixed concrete(remicon) has been increased due to the rising cost of raw materials such as cement and aggregate etc. cause by the upturn of oil price and increase of shipping charge. The delivery cost of remicon companies, however, has been decreased owing to their excessive competition in sale. Consequently, remicon companies began to manufacture the concrete by mixing ground granulated blast furnace slag(GGBF) in order to lower the production cost. Therefore, the objective of this study was to predict 28-day strength of GGBF slag concrete by early strength(1 day-strength, 7 day-strength) for the sake of managing with ease the quality of remicon. In experimental results, the prediction equation for 28 day-strength of GGBF slag concrete could be produced through the linear regression analysis of early strength and 28 day-strength. In order to acquire the reliability, all mixture were repeated as 3 times and each mixture order was carried out by random sampling. The prediction equation for 28 day-strength of GGBF slag concrete by 1-day strength(hot-water method) won the good reliability.

Analysis of Quarrying and Restoration Characteristics on Quarry in Korea (국내 토석사업장의 토석채취 및 복구특성 분석)

  • Park, Jae-Hyeon;Kim, Ki-Dae;Kang, Min-Jeng
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.2
    • /
    • pp.223-230
    • /
    • 2016
  • This study was carried out to investigate the quarrying and restoration characteristics on quarry in Korea. We researched quarrying and restoration status, analyzed the relationship between restoration area and permitted period, permitted area, quarrying volume, pit slope width, height, and berm width from 55 quarry sites. Most of the quarries were located in the following conditions : mixed forest, average altitude of less than 300 m, average mountain slope of $61^{\circ}$<, hillside, granite and landslide hazard class. Major quarrying characteristics were permitted period of 6~10 years, permitted area of less than 10 ha, quarrying volume of less than $1,000,000m^3$, a stone type of aggregate, a quarrying type of terrace, pit slope of $61^{\circ}$< Most quarries were restored by themselves, and the main restoration type was slope greening. Also, area ratio of flatland, pit slope, and berm was 54.9:39.6:5.5. Ccorrelation analysis showed that quarrying area was positively correlate with quarrying volume (${\alpha}=0.01$), permitted area, pit width, and pit height (a=0.05).

Field Applicability Evaluation of SB Latex-Modified Concrete for Concrete Bridge Deck Overlay (콘크리트 교면 덧씌우기를 위한 SB 라텍스개질 콘크리트의 현장적용성 평가)

  • Yun, Kyong-Ku;Lee, Joo-Hyung;Hong, Chang-Woo;Kim, Ki-Hyun;Kim, Tae-Kyong
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.93-103
    • /
    • 2001
  • This study focused on the field applicability evaluation of SB latex-modified concrete (LMC) for concrete bridge deck overlay using mobile mixer. The main experimental factors were water-cement ratio(31, 33, 35 37%), latex contents(0, 5, 10, 15, 20%), and fine aggregate ratio(55, 56, 57, 58%) in order to evaluate the workability, mechanical properties, and durability property of LMC. The slump loss, air content, compressive and flexible strength tests were used to evaluate LMC workability and strength properties. Also, the rapid chloride permeability test was used to evaluate the relative permeability of LMC. As a results, the LMC with enough workability and good quality was produced when it was mixed in field using mobile mixer, satisfying the target compressive strength and flexural strength. The required water-cement ratio of LMC for same workability when mixing with mobile mixer was less than that when mixing in laboratory. Increasing the amount of latex produced concrete with increased flexural strength by mobile mixer. The required cement-water ratios for same initial $19{\pm}3cm$ slump were 37% and 33% at laboratory and mobile mixer, respectively. The mobile mixer was accurately calibrated satisfying the required specification.

  • PDF

A Analysis of Generated Construction Waste and Dismantlement Method by Field Investigation (분별해체 현장조사에 의한 건설폐기물 발생량 및 공정 분석)

  • Lee, Jong-Chan;Song, Tae-Hyeob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.101-109
    • /
    • 2009
  • This CW(Construction wastes) are increasing as construction industry is growing, so many countries make efforts to recycle CW. Korea also made a stipulation for recycling CW. But the main content of this stipulation is for using recycled aggregates. Advanced countries try to increase reuse rate of not only recycled aggregate but also other kinds of wastes. So they are adopting SDM(separating dismantlement) method and we are also planning to make the system for SDM. This study is about SDM analysis through construction field investigation and difference analysis between SDM and UDM comparing predictive amount by UDM with real generated amount by SDM. First, the generated amount of construction wastes by SDM is more than estimated amount by UDM, and mixed waste was specially reduced more than UDM. The warehouse is easier than the office building to applicate SDM. But still there is no manual for SDM in the site, so establishment of SDM is demanded.

  • PDF

Evaluation of Interlayer Shear Properties and Bonding Strengths of a Stress-Absorbing Membrane Interlayer and Development of a Predictive Model for Fracture Energy (덧씌우기 응력흡수층에 대한 전단, 부착강도 평가 및 파괴에너지 예측모델 개발)

  • Kim, Dowan;Mun, Sungho;Kwon, Ohsun;Moon, Kihoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.87-95
    • /
    • 2018
  • PURPOSES : A geo-grid pavement, e.g., a stress-absorbing membrane interlayer (SAMI), can be applied to an asphalt-overlay method on the existing surface-pavement layer for pavement maintenance related to reflection cracking. Reflection cracking can occur when a crack in the existing surface layer influences the overlay pavement. It can reduce the pavement life cycle and adversely affect traffic safety. Moreover, a failed overlay can reduce the economic value. In this regard, the objective of this study is to evaluate the bonding properties between the rigid pavement and a SAMI by using the direct shear test and the pull-off test. The predicted fractural energy functions with the shear stress were determined from a numerical analysis of the moving average method and the polynomial regression method. METHODS : In this research, the shear and pull-off tests were performed to evaluate the properties of mixtures constructed using no interlayer, a tack-coat, and SAMI with fabric and without fabric. The lower mixture parts (describing the existing pavement) were mixed using the 25-40-8 joint cement-concrete standard. The overlay layer was constructed especially using polymer-modified stone mastic asphalt (SMA) pavement. It was composed of an SMA aggregate gradation and applied as the modified agent. The sixth polynomial regression equation and the general moving average method were utilized to estimate the interlayer shear strength. These numerical analysis methods were also used to determine the predictive models for estimating the fracture energy. RESULTS : From the direct shear test and the pull-off test results, the mixture bonded using the tack-coat (applied as the interlayer between the overlay layer and the jointed cement concrete) had the strongest shear resistance and bonding strength. In contrast, the SAMI pavement without fiber has a strong need for fractural energy at failure. CONCLUSIONS : The effects of site-reflection cracking can be determined using the same tests on cored specimens. Further, an empirical-mechanical finite-element method (FEM) must be done to understand the appropriate SAMI application. In this regard, the FEM application analy pavement-design analysis using thesis and bonding property tests using cored specimens from public roads will be conducted in further research.

Effect of acidic solutions on the microhardness of dentin and set OrthoMTA and their cytotoxicity on murine macrophage

  • Oh, Soram;Perinpanayagam, Hiran;Lee, Yoon;Kum, Jae-Won;Yoo, Yeon-Jee;Lim, Sang-Min;Chang, Seok Woo;Shon, Won-Jun;Lee, Woocheol;Baek, Seung-Ho;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.1
    • /
    • pp.12-21
    • /
    • 2016
  • Objectives: To evaluate the effects of three acids on the microhardness of set mineral trioxide aggregate (MTA) and root dentin, and cytotoxicity on murine macrophage. Materials and Methods: OrthoMTA (BioMTA) was mixed and packed into the human root dentin blocks of 1.5 mm diameter and 5 mm height. Four groups, each of ten roots, were exposed to 10% citric acid (CA), 5% glycolic acid (GA), 17% ethylenediaminetetraacetic acid (EDTA), and saline for five minutes after setting of the OrthoMTA. Vickers surface microhardness of set MTA and dentin was measured before and after exposure to solutions, and compared between groups using one-way ANOVA with Tukey test. The microhardness value of each group was analyzed using student t test. Acid-treated OrthoMTA and dentin was examined by scanning electron microscope (SEM). Cell viability of tested solutions was assessed using WST-8 assay and murine macrophage. Results: Three test solutions reduced microhardness of dentin. 17% EDTA demonstrated severe dentinal erosion, significantly reduced the dentinal microhardness compared to 10% CA (p = 0.034) or 5% GA (p = 0.006). 10% CA or 5% GA significantly reduced the surface microhardness of set MTA compared to 17% EDTA and saline (p < 0.001). Acid-treated OrthoMTA demonstrated microporous structure with destruction of globular crystal. EDTA exhibited significantly more cellular toxicity than the other acidic solutions at diluted concentrations (0.2, 0.5, 1.0%). Conclusions: Tested acidic solutions reduced microhardness of root dentin. Five minute's application of 10% CA and 5% GA significantly reduced the microhardness of set OrthoMTA with lower cellular cytotoxicity compared to 17% EDTA.

Study on the Thermal Characteristics of Concrete Using Micro Form Admixture (마이크로기포제를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young Shin;Kim, Jung Ho;Jeon, Hyun Kyu;Seo, Chee Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. Our government has also been trying to seek energy control methods for houses and buildings by proclaiming political polices on low-carbon green growth and construction and performance standards for environment-friendly housing. The energy consumption by buildings approximately reaches 25% of total korea energy consumption, and the increasing rate of energy consumption by buildings is stiffer than the rate by the other industries. The greatest part in the buildings of the energy consumption is building facade. While lots of research projects for reducing energy consumption of the facade have been conducted, but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research presents here a study to improve the insulation property of structural concrete formed by micro form admixture (MFA) with experimentally reviewing the physical, mechanical and thermal characteristics of the concrete. As the results of this experiment, in the case of concrete mixed with MFA, slump loss has been improved. As the mixing ratio of MFA increases, the compressive strength is decreased and thermal conductivity is increased. Also it was found that water-cement ratio increases, the compressive strength is decreased and thermal conductivity is increased. but, there was not big influence by the change of fine aggregate ratio.