• 제목/요약/키워드: mitochondrial turnover

검색결과 8건 처리시간 0.054초

Sirt1 and the Mitochondria

  • Tang, Bor Luen
    • Molecules and Cells
    • /
    • 제39권2호
    • /
    • pp.87-95
    • /
    • 2016
  • Sirt1 is the most prominent and extensively studied member of sirtuins, the family of mammalian class III histone deacetylases heavily implicated in health span and longevity. Although primarily a nuclear protein, Sirt1's deacetylation of Peroxisome proliferator-activated receptor Gamma Coactivator-$1{\alpha}$ (PGC-$1{\alpha}$) has been extensively implicated in metabolic control and mitochondrial biogenesis, which was proposed to partially underlie Sirt1's role in caloric restriction and impacts on longevity. The notion of Sirt1's regulation of PGC-$1{\alpha}$ activity and its role in mitochondrial biogenesis has, however, been controversial. Interestingly, Sirt1 also appears to be important for the turnover of defective mitochondria by mitophagy. I discuss here evidences for Sirt1's regulation of mitochondrial biogenesis and turnover, in relation to PGC-$1{\alpha}$ deacetylation and various aspects of cellular physiology and disease.

Tollip negatively regulates mitophagy by promoting the mitochondrial processing and cytoplasmic release of PINK1

  • Shin, Woo Hyun;Chung, Kwang Chul
    • BMB Reports
    • /
    • 제55권10호
    • /
    • pp.494-499
    • /
    • 2022
  • PTEN-induced putative kinase 1 (PINK1) is a serine/threonine kinase that phosphorylates several substrates and exerts neuroprotective effects against stress-induced apoptotic cell death. Mutations in PINK1 have been linked to autosomal recessive forms of Parkinson's disease (PD). Mitophagy is a type of autophagy that selectively promotes mitochondrial turnover and prevents the accumulation of dysfunctional mitochondria to maintain cellular homeostasis. Toll-interacting protein (Tollip) was initially identified as a negative regulator of IL-1β receptor signaling, suppressing inflammatory TLR signaling cascades. Recently, Tollip has been reported to play a role in autophagy and is implicated in neurodegeneration. In this study, we determined whether Tollip was functionally linked to PINK1-mediated mitophagy. Our results demonstrated that Tollip promoted the mitochondrial processing of PINK1 and altered the localization of PINK1, predominantly to the cytosol. This action was attributed to increased binding of PINK1 to mitochondrial processing peptidase β (MPPβ) and the subsequent increase in MPPβ-mediated mitochondrial PINK1 cleavage. Furthermore, Tollip suppressed mitophagy following carbonyl cyanide m-chlorophenylhydrazone-induced mitochondrial dysfunction. These findings suggest that Tollip inhibits mitophagy via the PINK1/parkin pathway upon mitochondrial damage, leading to the blockade of PINK1-mediated neuroprotection.

Resveratrol promotes mitochondrial energy metabolism in exercise-induced fatigued rats

  • Xujia Lou;Yulong Hu;Rong Ruan;Qiguan Jin
    • Nutrition Research and Practice
    • /
    • 제17권4호
    • /
    • pp.660-669
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: To investigate the effect and regulatory mechanism of resveratrol supplementation on the mitochondrial energy metabolism of rats with exercise-induced fatigue. MATERIALS/METHODS: Forty-eight Sprague-Dawley male rats were divided randomly into a blank control group (C), resveratrol group (R), exercise group (E), and exercise and resveratrol group (ER), with 12 rats in each group. Group ER and group E performed 6-wk swimming training with 5% wt-bearing, 60 min each time, 6 days a wk. Group ER was given resveratrol 50 mg/kg by gavage one hour after exercise; group R was only given resveratrol 50 mg/kg by gavage; group C and group E were fed normally. The same volume of solvent was given by gavage every day. RESULTS: Resveratrol supplementation could reduce the plasma blood urea nitrogen content, creatine kinase activity, and malondialdehyde content in the skeletal muscle, increase the total superoxide dismutase activity in the skeletal muscle, and improve the fatigue state. Resveratrol supplementation could improve the activities of Ca2+-Mg2+-ATPase, Na+-K+-ATPase, succinate dehydrogenase, and citrate synthase in the skeletal muscle. Furthermore, resveratrol supplementation could up-regulate the sirtuin 1 (SIRT1)-proliferator-activated receptor gamma coactivator-1α (PGC-1α)-nuclear respiratory factor 1 pathway. CONCLUSIONS: Resveratrol supplementation could promote mitochondrial biosynthesis via the SIRT1/PGC-1α pathway, increase the activity of the mitochondrial energy metabolism-related enzymes, improve the antioxidant capacity of the body, and promote recovery from exercise-induced fatigue.

Rescue of Oxidative Stress by Molecular Chaperones in Yeast

  • Ueom Jeonghoon;Kang Sooim;Lee Kyunghee
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2002년도 추계학술대회
    • /
    • pp.76-78
    • /
    • 2002
  • Heat shock proteins (HSPs) are induced in most living cells by mild heat treatment, ethanol, heavy metal ions and hypoxia. In yeast Saccharomyces cerevisiae, mild heat pretreatment strongly induces Hsp104 and thus provide acquired thermotolerance. The ability of hsp104 deleted mutant $({\triangle}hsp104)$ to acquire tolerance to extreme temperature is severely impaired. In providing thermotolerance, two ATP binding domains are indispensible, as demonstrated in ClpA and ClpB proteases of E. coli. The mechanisms by which Hsp104 protects cells from severe heat stress are not yet completely elucidated. We have investigated regulation of mitochondrial metabolic pathways controlled by the functional Hsp104 protein using $^{13}C_NMR$ spectroscopy and observed that the turnover rate of TCA cycle was enhanced in the absence of Hsp104. Production of ROS, which are toxic to kill cells radiply via oxidative stress, was also examined by fluorescence assay. Mitochondrial dysfunction was manifested in increased ROS levels and higher sensitivity for oxidative stress in the absence of Hsp104 protein expressed. Finally, we have identified mitochondrial complex I and Ferritin as binding protein(s) of Hsp104 by yeast two hybrid experiment. Based on these observations, we suggest that Hsp104 protein functions as a protector of oxidative stress via either keeping mitochondrial integrity, direct binding to mitochonrial components or regulating metal-catalyzed redox chemistry.

  • PDF

The Phosphodiesterase 4 Inhibitor Roflumilast Protects against Cigarette Smoke Extract-Induced Mitophagy-Dependent Cell Death in Epithelial Cells

  • Kyung, Sun Young;Kim, Yu Jin;Son, Eun Suk;Jeong, Sung Hwan;Park, Jeong-Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • 제81권2호
    • /
    • pp.138-147
    • /
    • 2018
  • Background: Recent studies show that mitophagy, the autophagy-dependent turnover of mitochondria, mediates pulmonary epithelial cell death in response to cigarette smoke extract (CSE) exposure and contributes to the development of emphysema in vivo during chronic cigarette smoke (CS) exposure, although the underlying mechanisms remain unclear. Methods: In this study, we investigated the role of mitophagy in the regulation of CSE-exposed lung bronchial epithelial cell (Beas-2B) death. We also investigated the role of a phosphodiesterase 4 inhibitor, roflumilast, in CSE-induced mitophagy-dependent cell death. Results: Our results demonstrated that CSE induces mitophagy in Beas-2B cells through mitochondrial dysfunction and increased the expression levels of the mitophagy regulator protein, PTEN-induced putative kinase-1 (PINK1), and the mitochondrial fission protein, dynamin-1-like protein (DRP1). CSE-induced epithelial cell death was significantly increased in Beas-2B cells exposed to CSE but was decreased by small interfering RNA-dependent knockdown of DRP1. Treatment with roflumilast in Beas-2B cells inhibited CSE-induced mitochondrial dysfunction and mitophagy by inhibiting the expression of phospho-DRP1 and -PINK1. Roflumilast protected against cell death and increased cell viability, as determined by the lactate dehydrogenase release test and the MTT assay, respectively, in Beas-2B cells exposed to CSE. Conclusion: These findings suggest that roflumilast plays a protective role in CS-induced mitophagy-dependent cell death.

Endothelial cell autophagy in the context of disease development

  • Basheer Abdullah Marzoog
    • Anatomy and Cell Biology
    • /
    • 제56권1호
    • /
    • pp.16-24
    • /
    • 2023
  • Endothelial cells (EC) are the anatomical boundaries between the intravascular and extravascular space. Damage to ECs is catastrophic and induces endothelial cell dysfunction. The pathogenesis is multifactorial and involves dysregulation in the signaling pathways, membrane lipids ratio disturbance, cell-cell adhesion disturbance, unfolded protein response, lysosomal and mitochondrial stress, autophagy dysregulation, and oxidative stress. Autophagy is a lysosomal-dependent turnover of intracellular components. Autophagy was recognized early in the pathogenesis of endothelial dysfunction. Autophagy is a remarkable patho (physiological) process in the cell homeostasis regulation including EC. Regulation of autophagy rate is disease-dependent and impaired with aging. Up-regulation of autophagy induces endothelial cell regeneration/differentiation and improves the function of impaired ones. The paper scrutinizes the molecular mechanisms and triggers of EC dysregulation and current perspectives for future therapeutic strategies by autophagy targeting.

Variability of Osteocalcin Status in Chinese Holstein Cattle: Do Phylogeny, Vitamin D or Gene Polymorphisms Matter?

  • Ferreri, Miro;Gao, Jian;Ren, Gaixian;Chen, Liben;Su, Jingliang;Han, Bo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권2호
    • /
    • pp.173-180
    • /
    • 2011
  • Osteocalcin (OC), a marker of bone turnover, displays patterns in relation to physiological and genetic factors. Here, we present an association study in a population of Chinese Holstein cattle (n = 24) with OC serum concentration as a phenotypic trait. We hypothesised that OC status is associated with phylogeny, vitamin D serum level and single nucleotide polymorphisms (SNPs). Mitochondrial DNA (mtDNA) was used as an unlinked marker to examine phylogeny and linkage to measured phenotypic traits of vitamin D and OC status. Following an association study with OC serum variability as the trait, genotyping of SNPs (n = 27) in OC-related genes was performed. Candidate SNPs were chosen in genes with an emphasis on the vitamin D and vitamin K pathways. Multivariant factor analysis revealed a correlation between vitamin D serum concentration and a SNP in the gene GC (rs43338565), which encodes a vitamin D-binding protein, as well as between a SNP in NFATc1 (rs42038422) and OC concentration. However, univariate analysis revealed that population structure, vitamin D serum levels and SNPs were not significant determinants of OC status in the studied group.

흰쥐 대뇌세포의 저산소증 모델에서 황금(黃芩)에 의한 heme oxygenase-1의 표현증가 (Upregulation of heme oxygenase-1 by Scutellaria baicalensis GEORGI Water-Extract in a Hypoxic Model of Cultured Rat Cortical Cells.)

  • 이원철;김완식;신길조;문일수;정승현
    • 생명과학회지
    • /
    • 제17권5호
    • /
    • pp.706-713
    • /
    • 2007
  • Scutellaria baicalensis GEORGI(SB) is used in oriental medicine for the treatment of incipient strokes. Although it has been reported that SB is neuroprotective in a hypoxia model, its mechanism is poorly understood. Here, we investigated the effect of SB on the modulation of heme oxygenase-1(HO-1), which has important biological roles in regulating mitochondrial heme protein turnover and in protecting against conditions such as hypoxia, neurodegenerative diseases, or sepsis. Rat cerebrocortical day In vitro(DIV)12 cells were grown in neurobasal medium. On DIV12 cells were treated with SB($20{\mu}g/ml$) and given a hypoxic shock ($2%\;O_2/5%\;CO_2,\;3\;hr$) on DIV14. In situ hybridization results revealed that SB upregulated HO-1 mRNA in neuronal dendrites in both normoxia and hypoxia(38.5% and 59.2%, respectively). At the protein level, SB upregulated HO-1 in the neuronal soma in both normoxia and hypoxia(22.4% and 15.7%, respectively). Interestingly, most significant increase was associated with astrocytes, which increased HO-1 protein by 77.5% compared to SB-untreated culture. These results indicate that SB upregulates both neuronal and glial HO-1 expression, which contributes to the neuroprotection efficacy in hypoxia).