• Title/Summary/Keyword: mitochondrial translocation

Search Result 50, Processing Time 0.036 seconds

Ursolic Acid Promotes Apoptosis of SGC-7901 Gastric Cancer Cells through ROCK/PTEN Mediated Mitochondrial Translocation of Cofilin-1

  • Li, Rui;Wang, Xia;Zhang, Xiao-Hong;Chen, Hong-Hai;Liu, Yan-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9593-9597
    • /
    • 2014
  • Ursolic acid, extracted from the traditional Chinese medicine bearberry, can induce apoptosis of gastric cancer cells. However, its pro-apoptotic mechanism still needs further investigation. More and more evidence demonstrates that mitochondrial translocation of cofilin-1 appears necessary for the regulation of apoptosis. Here, we report that ursolic acid (UA) potently induces the apoptosis of gastric cancer SGC-7901 cells. Further mechanistic studies revealed that the ROCK1/PTEN signaling pathway plays a critical role in UA-mediated mitochondrial translocation of cofilin-1 and apoptosis. These findings imply that induction of apoptosis by ursolic acid stems primarily from the activation of ROCK1 and PTEN, resulting in the translocation of cofilin-1 from cytoplasm to mitochondria, release of cytochrome c, activation of caspase-3 and caspase-9, and finally inducing apoptosis of gastric cancer SGC-7901 cells.

RKIP Downregulation Induces the HBx-Mediated Raf-1 Mitochondrial Translocation

  • Kim, Sun-Young;Park, Sung-Goo;Jung, Hye-Yun;Chi, Seung-Wook;Yu, Dae-Yeul;Lee, Sang-Chul;Bae, Kwang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.525-528
    • /
    • 2011
  • The Raf-1 kinase inhibitory protein (RKIP) can regulate multiple key signaling pathways. Specifically, RKIP binds to Raf-1 kinase and inhibits the Ras-Raf-1-MEK1/2- ERK1/2 pathway. Additionally, Raf-1 has been shown to translocate to mitochondria and thereby protect cells from stress-mediated apoptosis. Recently, HBx was found to stimulate the mitochondrial translocation of Raf-1, contributing to the anti-apoptotic effect. We found that RKIP was downregulated during HBx-mediated hepatocarcinogenesis. In this study, we show that RKIP bound to Raf-1 and consequently inhibited the translocation of Raf-1 into mitochondria. This promoted the apoptosis of cells treated with apoptotic stimulus. Thus, the downregulation of RKIP increased the level of free Raf-1 and thereby elevated the mitochondrial translocation of Raf-1 during HBx-mediated hepatocarcinogenesis. The elevated Raf-1 mitochondrial translocation induced the increased anti-apoptotic effect and subsequently promoted HBx-mediated hepatocarcinogenesis.

P53 transcription-independent activity mediates selenite-induced acute promyelocytic leukemia NB4 cell apoptosis

  • Guan, Liying;Huang, Fang;Li, Zhushi;Han, Bingshe;Jiang, Qian;Ren, Yun;Yang, Yang;Xu, Caimin
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.745-750
    • /
    • 2008
  • Selenium, an essential trace element possessing anti-carcinogenic properties, can induce apoptosis in cancer cells. We have previously shown that sodium selenite can induce apoptosis by activating the mitochondrial apoptosis pathway in NB4 cells. However, the detailed mechanism remains unclear. Presently, we demonstrate that p53 contributes to apoptosis by directing signaling at the mitochondria. Immunofluorescent and Western blot procedures revealed selenite-induced p53 translocation to mitochondria. Inhibition of p53 blocked accumulation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential, suggesting that mitochondrial p53 acts as an upstream signal of ROS and activates the mitochondrial apoptosis pathway. Selenite also disrupted cellular calcium ion homeostasis in a ROS-dependent manner and increased mitochondrial calcium ion concentration. p38 kinase mediated phosphorylation and mitochondrial translocation of p53. Taken together, these results indicate that p53 involves selenite-induced NB4 cell apoptosis by translocation to mitochondria and activation mitochondrial apoptosis pathway in a transcription-independent manner.

Temporal Characteristics of Cytosolic Translocation of Mitochondrial Proteins in Permanent Distal Middle Cerebral Artery Occlusion Model of Rats

  • Shin, Byoung-Wook;Sung, Jae-Hoon;Hong, Jae-Taek;Son, Byung-Chul;Lee, Sang-Won;Park, Chun-Kun
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.5
    • /
    • pp.306-313
    • /
    • 2007
  • Objective : In permanent distal middle cerebral artery occlusion [pdMCAO] model of rats, the temporal order of subcellular translocation is not fully understood yet. We studied translocation sequence of cytochrome c and apoptosis inducing factor [AIF] after pdMCAO and patterns of expression. Methods : Twenty-one male rats - with ten minutes, 1, 4, 8, 24 and 48 hours of pdMCAO groups - were enrolled. At core and penumbra area of each cerebral cortex, Western blotting of cytochrome c and AIF were performed using cytosolic fractions and then compared with sham specimens. With 48 hours group, the expression of cytochrome c and AIF was examined with immunofluorescent staining. Results : Compared to sham, the cytosolic translocation of cytochrome c significantly increased at all time points [p<0.05]. As early as 10 min after onset of ischemia, it was increased significantly [p<0.01]. The cytosolic translocation of AIF showed gradual increase with the passage of time and significantly increased 8 hours after [p<0.05]. As late as 24 hours and 48 hours after onset of ischemia, there were increased most significantly [p<0.01]. At penumbra, both proteins failed to show significant increase at all time points. At 48 hours after ischemia, colocalization of cytochrome c and AIF were confirmed. Conclusion : Cytosolic translocation of cytochrome c peaks much earlier than that of AIF in pdMCAO model of rat. Caspase dependent apoptosis activates soon after ischemia and later, it can be reinforced by gradually increasing AIF in ischemic core.

Emodin-Provoked Oxidative Stress Induces Apoptosis in Human Colon Cancer HCT116 Cells through a p53-Mitochondrial Apoptotic Pathway

  • Xie, Mei-Juan;Ma, Yi-Hua;Miao, Lin;Wang, Yan;Wang, Hai-Zhen;Xing, Ying-Ying;Xi, Tao;Lu, Yuan-Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5201-5205
    • /
    • 2014
  • Emodin, a natural anthraquinone isolated from the traditional Chinese medicine Radix rhizoma Rhei, can induce apoptosis in many kinds of cancer cells. This study demonstrated that emodin induces apoptosis in human colon cancer HCT116 cells by provoking oxidative stress, which subsequently triggers a p53-mitochondrial apoptotic pathway. Emodin induced mitochondrial transmembrane potential loss, increase in Bax and decrease in Bcl-2 expression and mitochondrial translocation and release of cytochrome c to cytosol in HCT116 cells. In response to emodin-treatment, ROS increased rapidly, and subsequently p53 was overexpressed. Pretreatment with the antioxidant NAC diminished apoptosis and p53 overexpression induced by emodin. Transfecting p53 siRNA also attenuated apoptosis induced by emodin, Bax expression and mitochondrial translocation being reduced compared to treatment with emodin alone. Taken together, these results indicate that ROS is a trigger of emodin-induced apoptosis in HCT116 cells, and p53 expression increases under oxidative stress, leading to Bax-mediated mitochondrial apoptosis.

The Nuclear Orphan Receptor NR4A1 is Involved in the Apoptotic Pathway Induced by LPS and Simvastatin in RAW 264.7 Macrophages

  • Kim, Yong Chan;Song, Seok Bean;Lee, Sang Kyu;Park, Sang Min;Kim, Young Sang
    • IMMUNE NETWORK
    • /
    • v.14 no.2
    • /
    • pp.116-122
    • /
    • 2014
  • Macrophage death plays a role in several physiological and inflammatory pathologies such as sepsis and arthritis. In our previous work, we showed that simvastatin triggers cell death in LPS-activated RAW 264.7 mouse macrophage cells through both caspase-dependent and independent apoptotic pathways. Here, we show that the nuclear orphan receptor NR4A1 is involved in a caspase-independent apoptotic process induced by LPS and simvastatin. Simvastatin-induced NR4A1 expression in RAW 264.7 macrophages and ectopic expression of a dominant-negative mutant form of NR4A1 effectively suppressed both DNA fragmentation and the disruption of mitochondrial membrane potential (MMP) during LPS- and simvastatin-induced apoptosis. Furthermore, apoptosis was accompanied by Bcl-2-associated X protein (Bax) translocation to the mitochondria. Our findings suggest that NR4A1 expression and mitochondrial translocation of Bax are related to simvastatin-induced apoptosis in LPS-activated RAW 264.7 macrophages.

Role of Annexin A5 on Mitochondria-Dependent Apoptosis Induced by Tetramethoxystilbene in Human Breast Cancer Cells

  • Hong, Mihye;Park, Nahee;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.519-524
    • /
    • 2014
  • We have previously shown that 2,4,3',5'-tetramethoxystilbene (TMS), a trans-stilbene analogue, induces apoptosis in human cancer cells. However, the detailed mechanisms of mitochondria-dependent apoptosis induced by TMS are not fully understood. In the present study, the possible roles of annexin A5 in TMS-mediated apoptosis were investigated in MCF7 human breast cancer cells. Quantitative real-time PCR analysis and Western blot analysis showed that the expression of annexin A5 was strongly increased in TMS-treated cells. TMS caused a strong translocation of annexin A5 from cytosol into mitochondria. Confocal laser scanning microscopic analysis clearly showed that TMS induced translocation of annexin A5 into mitochondria. TMS increased the expression and oligomerization of voltage-dependent anion channel (VDAC) 1, which may promote mitochondria-dependent apoptosis through disruption of mitochondrial membrane potential. When cells were treated with TMS, the levels of Bax, and Bak as well as annexin A5 were strongly enhanced. Moreover, we found that the cytosolic release of apoptogenic factors such as cytochrome c, or apoptosis-inducing factor (AIF) in mitochondria was markedly increased. Annexin A5 depletion by siRNA led to decreased proapoptotic factors such as Bax, Bak, and annexin A5. Taken together, our results indicate that annexin A5 may play an important role in TMS-mediated mitochondrial apoptosis through the regulation of proapoptotic proteins and VDAC1 expression.

Bad Translocation to Mitochondria with Bcl-XL Traced in-vivo by Using GFP (GFP를 이용하여 in-vivo에서 추적한 Bad와 Bcl-XL의 Mitochondria 이동)

  • Yoon, Soo Han;Kim, Jin Young;Park, Seung Woo;Ahn, Young Hwan;Ahn, Young Min;Cho, Ki Hong;Cho, Kyung Gi
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.10
    • /
    • pp.1283-1288
    • /
    • 2000
  • Objectives : The subcellular locations of Bad, Bid, Bax and Bcl-XL change during apoptosis and this change is important for the regulation of cell death. The purpose this study was to elucidate binding of Bad with Bcl-XL in vivo Methods : We mads Bad with Green Fluorescent Protein(GFP) using PCR method. We transfected and overexpressed GFP-Bad with or without Bcl-XL cotransfection in living COS-7 cell. Results : Bad and Bcl- XL bind one another in healthy living cells and this association controled mitochondrial docking. In the absence of Bad-XL, Bad was mainly cytosolic and partially bound to mitochondria. Upon coexpression of Bad and Bcl-XL, most of Bad translocated to mitochondria. These should suggest that Bad binds to the mitochondrial and cytoplasmic forms of Bcl-XL and Bad bound to cytoplasmic Bcl-XL translocates to mitochondria. These in vivo findings confirm that Bad make a complexes with Bcl- XL and cause mitochondrial translocation of Bad-Bcl-XL complex.

  • PDF

Oleanolic acid 3-acetate, a minor element of ginsenosides, induces apoptotic cell death in ovarian carcinoma and endometrial carcinoma cells via the involvement of a reactive oxygen species-independent mitochondrial pathway

  • Jo, Hantae;Oh, Jeong-Hyun;Park, Dong-Wook;Lee, Changho;Min, Churl K.
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.96-104
    • /
    • 2020
  • Objectives: Oleanolic acid, a minor element of ginsenosides, and its derivatives have been shown to have cytotoxicity against some tumor cells. The impact of cytotoxic effect of oleanolic acid 3-acetate on ovarian cancer SKOV3 cells and endometrial cancer HEC-1A cells were examined both in vivo and in vitro to explore the underlying mechanisms. Methods: Cytotoxic effects of oleanolic acid 3-acetate were assessed by cell viability, phosphatidylserine exposure on the cell surface, mitochondrial release of cytochrome C, nuclear translocation of apoptosis-inducing factor, depolarization of mitochondrial transmembrane potential (∆Ψm), and generation of reactive oxygen species (ROS). In vivo inhibition of tumor growth was also assessed with xenografts in immunocompromised mice. Results: Oleanolic acid 3-acetate exhibited potent cytotoxicity toward SKOV3 and HEC-1A cells by decreasing cell viability in a concentration-dependent manner. Importantly, oleanolic acid 3-acetate effectively suppressed the growth of SKOV3 cell tumor xenografts in immunocompromised mice. Furthermore, oleanolic acid 3-acetate induced apoptotic cell death as revealed by loss of ∆Ψm, release of cytochrome c, and nuclear translocation of apoptosis-inducing factor with a concomitant activation of many proapoptotic cellular components including poly(ADP-ribose) polymerase, Bcl-2, and caspases-8, caspase-3, and caspase-7. Oleanolic acid 3-acetate, however, caused a decrease in ROS production, suggesting the involvement of an ROS-independent pathway in oleanolic acid 3-acetate-induced apoptosis in SKOV3 and HEC-1A cells. Conclusion: These findings support the notion that oleanolic acid 3-acetate could be used as a potent anticancer supplementary agent against ovarian and endometrial cancer. Oleanolic acid 3-acetate exerts its proapoptotic effects through a rather unique molecular mechanism that involves an unconventional ROS-independent but mitochondria-mediated pathway.

A Conclusive Review on Amyloid Beta Peptide Induced Cerebrovascular Degeneration and the Mechanism in Mitochondria

  • Merlin, Jayalal L.P.
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.125-137
    • /
    • 2013
  • Promising evidence suggests that amyloid beta peptide ($A{\beta}$), a key mediator in age-dependent neuronal and cerebrovascular degeneration, activates death signalling processes leading to neuronal as well as non-neuronal cell death in the central nervous system. A major cellular event in $A{\beta}$-induced apoptosis of non-neuronal cells, including cerebral endothelial cells, astrocytes and oligodendrocytes, is mitochondrial dysfunction. The apoptosis signalling cascade upstream of mitochondria entails $A{\beta}$ activation of neutral sphingomyelinase, resulting in the release of ceramide from membrane sphingomyelin. Ceramide then activates protein phosphatase 2A (PP2A), a member in the ceramide-activated protein phosphatase (CAPP) family. PP2A dephosphorylation of Akt and FKHRL1 plays a pivotal role in $A{\beta}$-induced Bad translocation to mitochondria and transactivation of Bim. Bad and Bim are pro-apoptotic proteins that cause mitochondrial dysfunction characterized by excessive ROS formation, mitochondrial DNA (mtDNA) damage, and release of mitochondrial apoptotic proteins including cytochrome c, apoptosis inducing factor (AIF), endonuclease G and Smac. The cellular events activated by $A{\beta}$ to induce death of non-neuronal cells are complex. Understanding these apoptosis signalling processes will aid in the development of more effective strategies to slow down age-dependent cerebrovascular degeneration caused by progressive cerebrovascular $A{\beta}$ deposition.