• 제목/요약/키워드: mitochondrial mutation

검색결과 77건 처리시간 0.023초

사렵체 DNA의 11778 점돌연변이가 확인된 Leber씨 유전성 시신경병증 1례 (A Case of Leber's Hereditary Optic Neuropathy Showing 11778 Point Mutation of Mitochondrial DNA)

  • 정윤석;박승권;이승엽;하정상;박미영;이세진;이준
    • Journal of Yeungnam Medical Science
    • /
    • 제16권1호
    • /
    • pp.114-118
    • /
    • 1999
  • LHON은 사립체 DNA의 점돌연변이에 의해서 유발되며 11778, 3460, 14484의 세 부위가 주된 사립체 DNA 점돌연변이의 위치로 알려져 있다. 이에 저자들은 점진적인 시력 저하를 호소하면서 사립체 DNA 분석 결과 11778 점돌연변이가 확인된 LHON환자 1례를 경험하였기에 문헌고찰과 함께 보고하는 바이다.

  • PDF

파라핀조직을 이용한 미토콘드리아 DNA 돌연변이 확인 (Identification of a Mitochondrial DNA Mutation in Paraffin-Embedded Muscle Tissues)

  • 김상호;유석호
    • 생명과학회지
    • /
    • 제14권2호
    • /
    • pp.296-300
    • /
    • 2004
  • 환자의 생조직, 얼린 조직 혹은 혈액이 없는 경우에, formalin으로 고정된 파라핀조직을 이용하여 미토콘드리아 돌연변이를 확인할 수 있는지를 조사하였다. MELAS 환자 4명의 파라핀조직을 택해 이들 조직으로부터 DNA를 추출하여 대부분의 MELAS 환자 미토콘드리아 DNA의 tRN $A^{Leu(UUR)}$ gene의 3243지역에서 발견되는 Adenine의 Cuanine으로의 염기치환을 확인하고자 하였다. 실험결과 3명의 환자에게서 이 점 돌연변이를 확인할 수 있어 이들 파라핀조직의 상태가 좋은 것으로 여겨져 미토콘드리아 DNA 돌연변이 연구에 파라핀조직을 활용할 수 있을 것으로 보인다.다.

Mitochondrial DNA Somatic Mutation in Cancer

  • Kim, Aekyong
    • Toxicological Research
    • /
    • 제30권4호
    • /
    • pp.235-242
    • /
    • 2014
  • Cancer cells are known to drastically alter cellular energy metabolism. The Warburg effect has been known for over 80 years as pertaining cancer-specific aerobic glycolysis. As underlying molecular mechanisms are elucidated so that cancer cells alter the cellular energy metabolism for their advantage, the significance of the modulation of metabolic profiles is gaining attention. Now, metabolic reprogramming is becoming an emerging hallmark of cancer. Therapeutic agents that target cancer energy metabolism are under intensive investigation, but these investigations are mostly focused on the cytosolic glycolytic processes. Although mitochondrial oxidative phosphorylation is an integral part of cellular energy metabolism, until recently, it has been regarded as an auxiliary to cytosolic glycolytic processes in cancer energy metabolism. In this review, we will discuss the importance of mitochondrial respiration in the metabolic reprogramming of cancer, in addition to discussing the justification for using mitochondrial DNA somatic mutation as metabolic determinants for cancer sensitivity in glucose limitation.

Mitochondrial DNA Mutation and Oxidative Stress

  • Kim, Tae-Ho;Kim, Hans-H.;Joo, Hyun
    • Interdisciplinary Bio Central
    • /
    • 제3권4호
    • /
    • pp.16.1-16.8
    • /
    • 2011
  • Defects in mitochondrial DNA (mtDNA) cause many human diseases and are critical factors that contribute to aging. The mechanisms of maternally-inherited mtDNA mutations are well studied. However, the role of acquired mutations during the aging process is still poorly understood. The most plausible mechanism is that increased reactive oxygen species (ROS) may affect the opening of mitochondrial voltage dependent anion channel (VDAC) and thus results in damage to mtDNA. This review focuses on recent trends in mtDNA research and the mutations that appear to be associated with increased ROS.

Mutation analyses in Korean patients with MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes)

  • Yoo, Han-Wook;Kim, Gu-Hwan;Ko, Tae-Sung
    • Journal of Genetic Medicine
    • /
    • 제1권1호
    • /
    • pp.39-43
    • /
    • 1997
  • The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is inherited maternally, in which the MTTL1*MELAS 3243 mutation has been most commonly found as a heteroplasmy of A to G point mutation in the $tRNA^{Leu(UUR)}$ gene. The MTTL1*MELAS 3271 mutation is known to be the second common mutation, though clinical features of both mutations are not remarkably different. Recently, a variety of minor mutations have been reported in patients with MELAS. In this study, major efforts have been made to investigate the allele frequency of major three mutations including MTTL1*MELAS 3243, 3252, 3271 in 10 Korean families with MELAS probands. The PCR and subsequent direct sequencing of the PCR product in the regions spanning these three mutation sites were employed to identify the mutation in each proband. All family members have been screened for the presence of these three mutations by PCR-RFLP assay using Apa I, Acc I and Bfr I restriction enzymes. The MTTL1*MELAS 3243 mutation was most commonly found (7 out of 10 families tested) followed by the MTTL1*MELAS 3271 which was identified in 1 out of 10 families. In the remaining 2 families none of three mutations were found, indicating the presence of either nuclear mutation or yet unidentified mitochondrial DNA mutation in these families.

  • PDF

A novel p.Leu699Pro mutation in MFN2 gene causes Charcot-Marie-Tooth disease type 2A

  • Kang, Sa-Yoon;Ko, Keun Hyuk;Oh, Jung-Hwan
    • Annals of Clinical Neurophysiology
    • /
    • 제21권1호
    • /
    • pp.57-60
    • /
    • 2019
  • Axonal Charcot-Marie-Tooth disease (CMT2) has most frequently been associated with mutations in the MFN2 gene. MFN2 encodes mitofusin 2, which is a mitochondrial fusion protein that plays an essential role in mitochondrial function. We report CMT2 in a Korean father and his son that manifested with gait difficulties and progressive atrophy of the lower legs. Molecular analysis revealed a novel heterozygous c.2096T>C (p.Leu699Pro) mutation in the exon 18 of MFN2 in both subjects. We suggest that this novel mutation in MFN2 is probably a pathogenic mutation for CMT2.

MELAS Syndrome 환아(患兒) 1예(例)에 대한 고찰(考察) (A Case Report of MELAS Syndrom)

  • 정환수;이진용;김덕곤
    • 대한한방소아과학회지
    • /
    • 제13권2호
    • /
    • pp.225-235
    • /
    • 1999
  • MELAS is the condition associated with mutant mtDNA that most closely mimics thrombotic cerebrovascular disease. Characteristic abnormalities are two. first, 'ragged-red fibers' in muscle biopsy. second, point mutation in the mitochondrial DNA analyses. The characteristic clinical presentations of MELAS are short stature, recurrent stroke like episodes, migraine-like headache, sensorineural hearng loss, glucose intolerance and neuropathy. We now report a case of MELAS syndrome having mitochondrial DNA mutation with an A to G transition at the 3,243rd position diagnosed in Chung-ang Hospital.

  • PDF

Amino acid substitutions conferring cold-sensitive phenotype on the yeast MTF1 gene

  • Jang, Sei-Heon
    • Journal of Microbiology
    • /
    • 제35권3호
    • /
    • pp.228-233
    • /
    • 1997
  • The MTF1 gene of Saccharomyces cerevisiae encodes a 43 kDa MITOCHONDRIAL RNA polymerase specificity factor which recognizes mitochondrial promoters to initiate correct transcription. To better understand structure-function of the MTF1 gene as well as the transcription mechanism of mitochondrial RNA polymerase, two cold-sensitive alleles of the MTF1 mutation were isolated by plasmid shuffling method after PCR-based random mutagenesis of the MTF1 gene. The mutation sites were analyzed by nucleotide sequencing. These cs phenotype mtf1 mutants were respiration competent on the nonfermentible glycerol medium at the permissive temperature, but incompetent at 13.deg.C. The cs phenotype allele of the MTF1, yJH147, encoded an L146P replacement. The other cs allele, yJH148, contained K179E and K214M double replacements. Mutations in both alleles were in a region of Mtflp which is located between domains with amino acid sequence similarities to conserved regions 2 and 3 of bacterial s factors.

  • PDF

Novel Mutations in Cholangiocarcinoma with Low Frequencies Revealed by Whole Mitochondrial Genome Sequencing

  • Muisuk, Kanha;Silsirivanit, Atit;Imtawil, Kanokwan;Bunthot, Suphawadee;Pukhem, Ake;Pairojkul, Chawalit;Wongkham, Sopit;Wongkham, Chaisiri
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.1737-1742
    • /
    • 2015
  • Background: Mitochondrial DNA (mtDNA) mutations have been shown to be associated with cancer. This study explored whether mtDNA mutations enhance cholangiocarcinoma (CCA) development in individuals. Materials and Methods: The whole mitochondrial genome sequences of 25 CCA patient tissues were determined and compared to those of white blood cells from the corresponding individuals and 12 healthy controls. The mitochondrial genome was amplified using primers from Mitoseq and compared with the Cambridge Reference Sequence. Results: A total of 161 mutations were identified in CCA tissues and the corresponding white blood cells, indicating germline origins. Sixty-five (40%) were new. Nine mutations, representing those most frequently observed in CCA were tested on the larger cohort of 60 CCA patients and 55 controls. Similar occurrence frequencies were observed in both groups. Conclusions: While the correspondence between the cancer and mitochondrial genome mutation was low, it is of interest to explore the functions of the missense mutations in a larger cohort, given the possibility of targeting mitochondria for cancer markers and therapy in the future.