• Title/Summary/Keyword: mitochondrial function

Search Result 299, Processing Time 0.026 seconds

Far-infrared rays enhance mitochondrial biogenesis and GLUT3 expression under low glucose conditions in rat skeletal muscle cells

  • Seo, Yelim;Kim, Young-Won;Lee, Donghee;Kim, Donghyeon;Kim, Kyoungseo;Kim, Taewoo;Baek, Changyeob;Lee, Yerim;Lee, Junhyeok;Lee, Hosung;Jang, Geonwoo;Jeong, Wonyeong;Choi, Junho;Hwang, Doegeun;Suh, Jung Soo;Kim, Sun-Woo;Kim, Hyoung Kyu;Han, Jin;Bang, Hyoweon;Kim, Jung-Ha;Zhou, Tong;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.167-175
    • /
    • 2021
  • Far-infrared rays (FIR) are known to have various effects on atoms and molecular structures within cells owing to their radiation and vibration frequencies. The present study examined the effects of FIR on gene expression related to glucose transport through microarray analysis in rat skeletal muscle cells, as well as on mitochondrial biogenesis, at high and low glucose conditions. FIR were emitted from a bio-active material coated fabric (BMCF). L6 cells were treated with 30% BMCF for 24 h in medium containing 25 or 5.5 mM glucose, and changes in the expression of glucose transporter genes were determined. The expression of GLUT3 (Slc2a3) increased 2.0-fold (p < 0.05) under 5.5 mM glucose and 30% BMCF. In addition, mitochondrial oxygen consumption and membrane potential (ΔΨm) increased 1.5- and 3.4-fold (p < 0.05 and p < 0.001), respectively, but no significant change in expression of Pgc-1a, a regulator of mitochondrial biogenesis, was observed in 24 h. To analyze the relationship between GLUT3 expression and mitochondrial biogenesis under FIR, GLUT3 was down-modulated by siRNA for 72 h. As a result, the ΔΨm of the GLUT3 siRNA-treated cells increased 3.0-fold (p < 0.001), whereas that of the control group increased 4.6-fold (p < 0.001). Moreover, Pgc-1a expression increased upon 30% BMCF treatment for 72 h; an effect that was more pronounced in the presence of GLUT3. These results suggest that FIR may hold therapeutic potential for improving glucose metabolism and mitochondrial function in metabolic diseases associated with insufficient glucose supply, such as type 2 diabetes.

Melatonin Protects Chronic Kidney Disease Mesenchymal Stem/Stromal Cells against Accumulation of Methylglyoxal via Modulation of Hexokinase-2 Expression

  • Go, Gyeongyun;Yoon, Yeo Min;Yoon, Sungtae;Lee, Gaeun;Lim, Ji Ho;Han, Su-Yeon;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • Treatment options for patients with chronic kidney disease (CKD) are currently limited; therefore, there has been significant interest in applying mesenchymal stem/stromal cell (MSC)-based therapy to treat CKD. However, MSCs harvested from CKD patients tend to show diminished viability and proliferation due to sustained exposure to uremic toxins in the CKD environment, which limits their utility for cell therapy. The application of melatonin has been demonstrated to improve the therapeutic efficacy of MSCs derived from and engrafted to tissues in patients suffering from CKD, although the underlying biological mechanism has not been elucidated. In this study, we observed overexpression of hexokinase-2 (HK2) in serum samples of CKD patients and MSCs harvested from an adenine-fed CKD mouse model (CKD-mMSCs). HK2 upregulation led to increased production levels of methylglyoxal (MG), a toxic metabolic intermediate of abnormal glycolytic processes. The overabundance of HK2 and MG was associated with impaired mitochondrial function and low cell proliferation in CKD-mMSCs. Melatonin treatment inhibited the increases in HK2 and MG levels, and further improved mitochondrial function, glycolytic metabolism, and cell proliferation. Our findings suggest that identifying and characterizing metabolic regulators such as HK2 in CKD may improve the efficacy of MSCs for treating CKD and other kidney disorders.

Voluntary stand-up physical activity enhances endurance exercise capacity in rats

  • Seo, Dae Yun;Lee, Sung Ryul;Kwak, Hyo-Bum;Seo, Kyo Won;McGregor, Robin A;Yeo, Ji Young;Ko, Tae Hee;Bolorerdene, Saranhuu;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.287-295
    • /
    • 2016
  • Involuntary physical activity induced by the avoidance of electrical shock leads to improved endurance exercise capacity in animals. However, it remains unknown whether voluntary stand-up physical activity (SPA) without forced simulating factors improves endurance exercise capacity in animals. We examined the effects of SPA on body weight, cardiac function, and endurance exercise capacity for 12 weeks. Twelve male Sprague-Dawley rats (aged 8 weeks, n=6 per group) were randomly assigned to a control group (CON) or a voluntary SPA group. The rats were induced to perform voluntary SPA (lifting a load equal to their body weight), while the food height (18.0 cm) in cages was increased progressively by 3.5 every 4 weeks until it reached 28.5 cm for 12 weeks. The SPA group showed a lower body weight compared to the CON group, but voluntary SPA did not affect the skeletal muscle and heart weights, food intake, and echocardiography results. Although the SPA group showed higher grip strength, running time, and distance compared to the CON group, the level of irisin, corticosterone, genetic expression of mitochondrial biogenesis, and nuclei numbers were not affected. These findings show that voluntary SPA without any forced stimuli in rats can effectively reduce body weight and enhance endurance exercise capacity, suggesting that it may be an important alternative strategy to enhance endurance exercise capacity.

"25-kDa Thiol Peroxidase" (TPx II) Acts as a "Housekeeping" Antioxidant

  • Cha, Mee-Kyung;Kim, II-Han
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.506-510
    • /
    • 1999
  • The newly-found thiol peroxidases (TPx) with a conserved cysteine as the primary site of catalysis are capable of catalyzing the thiol-dependent reduction of peroxides. However, the cellular distributions of the isoforms remain poorly understood. As a first step in understanding the physiological functions of the TPx isoforms, we examined the cellular and tissue distribution of the isoenzymes in various bovine tissues. The tissue distributions of TPx isoenzymes indicate that two types of TPx are widely distributed throughout all of the tested tissues. These two forms are the predominant proteins, with levels of the proteins being quite different from each other. The level of predominant TPx proteins, named type II (TPx II) and type V (TPx V), appeared to be very different with respect to tissue type. The cellular distribution and level of TPx isoenzymes also varied with the types of cells. Immunoblot analysis of the mitochondrial and cytosol fractions from various tissues indicates that TPx III is a unique mitochondrial form. Based on the different tissue and cellular distribution of TPx isoenzymes, we discuss the physiological function of TPx isoenzymes, especially the ubiquitous TPx II.

  • PDF

Gliotoxin-Induced Oxidative Stress Mediates the Apoptotic Death in Human Leukemic HL-60 cells (진균독소 Gliotoxin-유도성 산화적 손상에 의한 Apoptosis)

  • 장해란;김영희;김남송;원진숙;조정환;윤재도;임창인;김호찬;최익준
    • Toxicological Research
    • /
    • v.18 no.3
    • /
    • pp.275-283
    • /
    • 2002
  • Fungal metabolite, gliotoxin is an epipolythiodioxopiperazin (ETP) class and has various roles including immunomodulatory and apoptotic effects. This study was designed to evaluate the mechanism by which gliotoxin exerts the apoptosis on human promyelocytic leukemic HL-60 cells. Herein, we demonstrated that the gliotoxin decreased the cell viability in a time-dependent manner Gliotoxin-induced cell death was confirmed us apoptosis characterized by chromatin condensation and ladder-pattern fragmentation of genomic DNA. Gliotoxin increased the catalytic activities of caspase-3 and caspase-9. Activation of caspase-3 was further confirmed by degradation of procaspase-3 and poly(ADP-ribose) polymerase (PARP) by gliotoxin in HL-60 cells. Furthermore, gliotoxin induced the changes of mitochondrial transmembrane potential (MTP). Antioxidants, including GSH and NAC, markedly inhibited apoptosis with conistent suppression of enzymatic activity of caspase-3, caspase-9, and MTP loss in gliotoxin-treated cells. Taken together, we suggest that gliotoxin function as an oxidant and ploys proapoptotic roles in HL-60 cells via activation of intrinsic caspase cascades as well as mitochondrial dysfunction.

A novel p.Leu699Pro mutation in MFN2 gene causes Charcot-Marie-Tooth disease type 2A

  • Kang, Sa-Yoon;Ko, Keun Hyuk;Oh, Jung-Hwan
    • Annals of Clinical Neurophysiology
    • /
    • v.21 no.1
    • /
    • pp.57-60
    • /
    • 2019
  • Axonal Charcot-Marie-Tooth disease (CMT2) has most frequently been associated with mutations in the MFN2 gene. MFN2 encodes mitofusin 2, which is a mitochondrial fusion protein that plays an essential role in mitochondrial function. We report CMT2 in a Korean father and his son that manifested with gait difficulties and progressive atrophy of the lower legs. Molecular analysis revealed a novel heterozygous c.2096T>C (p.Leu699Pro) mutation in the exon 18 of MFN2 in both subjects. We suggest that this novel mutation in MFN2 is probably a pathogenic mutation for CMT2.

Induction of apoptosis in human promyelocytic leukaemia HL -60 cells by yomogin involves release of cytochrome c and activation of caspase

  • Jeong, Seoung-Hee;Koo, Sung-Ja;Ryu, Shi-Yong;Park, Hee-Jun;Lee, Kyung-Tae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.319.1-319.1
    • /
    • 2002
  • Yomogin. an eudesmane sesquiterpene isolated from Artemisia princeps, was found to induce apoptosis in human promyelocytic leukaemia, HL -60 cell with characteristic apoptotic features like nuclear condensation, apoptotic body formation, flipping of membrane phosphatidylserine, release of mitochondrial cytochrome c and caspase-8. -9. and -3 activation. Furthermore. early yomogin-induced cytochrome c release was not affected by the caspase inhibitor Z-VAd fmk and preceded loss of mitochondrial membrane potential. The results suggest that induction of apoptosis by yomogin may provide a pivotal mechanism for their cancer chemopreventive function.

  • PDF

Glycolysis Mediated Sarcoplasmic Reticulum Ca2+ Signal Regulates Mitochondria Ca2+ during Skeletal Muscle Contraction (근수축시 해당작용에 의한 근형질 세망의 Ca2+ 변화가 미토콘드리아 Ca2+ 증가에 미치는 영향)

  • Park, Dae-Ryoung
    • Exercise Science
    • /
    • v.26 no.3
    • /
    • pp.229-237
    • /
    • 2017
  • PURPOSE: This study was to investigate the Glycolysis mediated sarcoplasmic reticulum (SR) $Ca^{2+}$ signal regulates mitochondria $Ca^{2+}$ during skeletal muscle contraction by using glycolysis inhibitor. METHODS: To examine the effect of Glycolysis inhibitor on SR and mitochondria $Ca^{2+}$ content, we used skeletal muscle fiber from gastrocnemius muscle. 2-deoxy glucose and 3-bromo pyruvate used as glycolysis inhibitor, it applied to electrically stimulated muscle contraction experiment. Intracellular $Ca^{2+}$ content, SR, mitochondria $Ca^{2+}$ level and mitochondria membrane potential (MMP) was detected by confocal microscope. Mitochondrial energy metabolism related enzyme, citric acid synthase activity also examined for mitochondrial function during the muscle contraction. RESULTS: Treatment of 2-DG and 3BP decreased the muscle contraction induced SR $Ca^{2+}$ increase however the mitochondria $Ca^{2+}$ level was increased by treatment of inhibitors and showed and overloading as compared with the control group. Glycolysis inhibitor and thapsigargin treatment showed a significant decrease in MPP of skeletal muscle cells compared to the control group. CS activity significantly decreased after pretreatment of glycolysis inhibitor during skeletal muscle contraction. These results suggest that regulation of mitochondrial $Ca^{2+}$ levels by glycolysis is an important factor in mitochondrial energy production during skeletal muscle contraction CONCLUSIONS: These results suggest that mitochondria $Ca^{2+}$ level can be regulated by SR $Ca^{2+}$ level and glycolytic regulation of intraocular $Ca^{2+}$ signal play pivotal role in regulation of mitochondria energy metabolism during the muscle contraction.

Increased Expression of ATP-sensitive $K^+$ Channels Improves the Right Ventricular Tolerance to Hypoxia in Rabbit Hearts

  • Choi, Seong-Woo;Ahn, Jun-Seok;Kim, Hyoung-Kyu;Kim, Na-Ri;Choi, Tae-Hoon;Park, Sung-Woo;Ko, En-A;Park, Won-Sun;Song, Dae-Kyu;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.4
    • /
    • pp.189-194
    • /
    • 2011
  • ATP-sensitive $K^+$ channels ($K_{ATP}$) are major component of preventing ischemia-reperfusion injury. However, there is little information regarding to the expressional difference of $K_{ATP}$ and its function between left and right ventricles. In this study, we measured the lactate dehydrogenase release of rabbit heart slices in vitro and determined the difference of the $K_{ATP}$ expression at the both ventricles by measuring the level of $K_{ATP}$-forming Kir6.2 (OcKir6.2) mRNA using in situ hybridization. The hearts were preconditioned with 15 min hypoxia and reoxygenated for 15 min before a hypoxic period of 60 min, followed by reoxygenation for 180 min. With hypoxic preconditioning (100% $N_2$) with 15 min, left ventricles (LV) showed higher release of LDH comparing with right ventricles (RV). Adding $K_{ATP}$ blocker glibenclamide ($10{\mu}M$) prior to a hypoxic period of 60 min, hypoxic preconditioning effect of RV was more abolished than LV. With in situ hybridization, the optical density of OcKir6.2 was higher in RV. Therefore, we suggest that different $K_{ATP}$ expression between LV and RV is responsible for the different response to hypoxia and hypoxic preconditioning of rabbit hearts.

Aged garlic extract enhances exercise-mediated improvement of metabolic parameters in high fat diet-induced obese rats

  • Seo, Dae Yun;Lee, SungRyul;Figueroa, Arturo;Kwak, Yi Sub;Kim, Nari;Rhee, Byoung Doo;Ko, Kyung Soo;Bang, Hyun Seok;Baek, Yeong Ho;Han, Jin
    • Nutrition Research and Practice
    • /
    • v.6 no.6
    • /
    • pp.513-519
    • /
    • 2012
  • Aged garlic extract (AGE) is known to have a protective effect against immune system, endothelial function, oxidative stress and inflammation. We examined the effects of exercise with and without aged garlic extract administration on body weight, lipid profiles, inflammatory cytokines, and oxidative stress marker in high-fat diet (HFD)-induced obese rats. Forty-five Sprague-Dawley rats were fed either a HFD (HFD, n = 40) or a normal diet (ND, n = 5) for 6 weeks and thereafter randomized into ND (n = 5), HFD (n = 10), HFD with AGE (n = 10), HFD with Exercise (n = 10), or HFD with Exercise+AGE (n = 10) for 4 weeks. AGE groups were administered at a dose of 2.86 g/kg body weight, orally. Exercise consisted of running 15-60 min 5 days/week with gradually increasing intensity. AGE (P<0.01), Exercise, and Exercise+AGE (P<0.001) attenuated body weight gain and food efficiency ratio compared to HFD. Visceral fat and liver weight gain were attenuated (P<0.05) with all three interventions with a greater effect on visceral fat in the Exercise+AGE than AGE (P<0.001). In reducing visceral fat (P<0.001), epididymal fat (P<0.01) and liver weight (P<0.001), Exercise+AGE was effective, but exercise showed a stronger suppressive effect than AGE. Exercise+AGE showed further additive effects on reducing visceral fat and liver weight (P<0.001). AGE significantly attenuated the increase in total cholesterol and low-density lipoprotein-cholesterol compared with HFD (P<0.05). Exercise+AGE attenuated the increase in triglycerides compared with HFD (P<0.05). Exercise group significantly decrease in C-reactive protein (P<0.001). These results suggest that AGE supplementation and exercise alone have anti-obesity, cholesterol lowering, and anti-inflammatory effects, but the combined intervention is more effective in reducing weight gain and triglycerides levels than either intervention alone.