• 제목/요약/키워드: mitochondrial antioxidant

검색결과 202건 처리시간 0.021초

Roles of Oxidative Stress in the Development and Progression of Breast Cancer

  • Nourazarian, Ali Reza;Kangari, Parisa;Salmaninejad, Arash
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권12호
    • /
    • pp.4745-4751
    • /
    • 2014
  • Oxidative stress is caused by an imbalance in the redox status of the body. In such a state, increase of free radicals in the body can lead to tissue damage. One of the most important species of free radicals is reactive oxygen species (ROS) produced by various metabolic pathways, including aerobic metabolism in the mitochondrial respiratory chain. It plays a critical role in the initiation and progression of various types of cancers. ROS affects different signaling pathways, including growth factors and mitogenic pathways, and controls many cellular processes, including cell proliferation, and thus stimulates the uncontrolled growth of cells which encourages the development of tumors and begins the process of carcinogenesis. Increased oxidative stress caused by reactive species can reduce the body's antioxidant defense against angiogenesis and metastasis in cancer cells. These processes are main factors in the development of cancer. Bimolecular reactions cause free radicals in which create such compounds as malondialdehyde (MDA) and hydroxyguanosine. These substances can be used as indicators of cancer. In this review, free radicals as oxidizing agents, antioxidants as the immune system, and the role of oxidative stress in cancer, particularly breast cancer, have been investigated in the hope that better identification of the factors involved in the occurrence and spread of cancer will improve the identification of treatment goals.

Microbial production of coenzyme Q10

  • Suh, Jung-Woo
    • 한국약용작물학회:학술대회논문집
    • /
    • 한국약용작물학회 2006년도 Proceedings of The Convention of The Korean Society of Applied Pharmacology
    • /
    • pp.127-130
    • /
    • 2006
  • Coenzyme Q10(CoQ10) is a biological quinine compound that is widely found in living organisms including yeast, plants, and animals. CoQ10 has two major physiological activities:(a)mitochondrial electron-transport activity and (b)antioxidant activity. Various clinical applications are also available : Parkinson's disease, Heart disease, diabetes. Because of its various application filed, the market size of CoQ 10 is continuously expanding all over the world. A Japanese company, Nisshin Pharma Inc. is the first industrial producer of CoQ10(1974). CoQ10 can be produced by fermentation and chemical synthesis. In several companies, these two methods are used for the production of CoQ10:chemical synthesis - Yungjin, Daewoong, Nishin Parma; fermentation - Kaneka, Kyowa, Yungjin, etc. Researchs in microbial production of CoQ10 have several steps: screening of producing microorganisms, strain development, fermentation process, purification process, scale-up process, plant production. Several strategies are available for the strain development : Random mutation and screening, directed metabolic engineering. For the optimization of fermentation process, various conditions (nutrient, aeration, temperature, culture type, etc.) are considered. Purification is one of the most important step because the quality of final products entirely depends on its purity. The production cost will be reduced and the quality of the CoQ10 will be impoved by continuous researches in strain development, fermentation process, purification process.

  • PDF

The subcellular distribution of MnSOD alters during sodium selenite-induced apoptosis

  • Guan, Liying;Jiang, Qian;Li, Zhushi;Huang, Fang;Ren, Yun;Yang, Yang;Xu, Caimin
    • BMB Reports
    • /
    • 제42권6호
    • /
    • pp.361-366
    • /
    • 2009
  • It was reported that high doses of sodium selenite can induce apoptosis of cancer cells, but the molecular mechanisms are poorly understood. Manganese superoxide dismutase (MnSOD) converts superoxide radical to hydrogen peroxide within the mitochondrial matrix and is one of the most important antioxidant enzymes. In this study, we showed that 20 ${\mu}M$ sodium selenite could alter subcellular distribution of MnSOD, namely a decrease in mitochondria and an increase in cytosol. The alteration of subcellular distribution of MnSOD is dependent on the production of superoxide induced by sodium selenite.

Pristimerin, a Naturally Occurring Triterpenoid, Exerts Potent Anticancer Effect in Colon Cancer Cells

  • Seo, Hee Won;Park, Ju-Hyung;Lee, Ji Yeon;Park, Hyun-Ju;Kim, Jin-Kyung
    • 대한의생명과학회지
    • /
    • 제24권1호
    • /
    • pp.15-22
    • /
    • 2018
  • Pristimerin is a triterpene compound isolated from plant extracts that reportedly possesses antitumor, antioxidant, and anti-inflammatory activities. The current study was designed to evaluate the antitumor effects of pristimerin on human colon cancer cells. Treatment of the human colon cancer cells, HCT116 and SW480, with pristimerin led to a dose-dependent decrease in cell proliferation. Flow cytometry experiments showed that pristimerin increased cell apoptotic rate and decreased the mitochondrial membrane potential in HCT116 and SW480 cells. Western blot assay showed that pristimerin induced increased cleavage of caspase-3, -7, -8, and poly ADP ribose polymerase. Treatment with pristimerin also caused a marked decrease in the expression of Bcl-2 and Bcl-xL. Additionally, the levels of phosphorylated AKT and forkhead box O3a (FOXO3a) were decreased in pristimerin-treated colon cancer cells. Taken together, our study illustrated that pristimerin promoted apoptosis via the AKT/FOXO3a signaling pathway in colon cancer cells, elucidating that it might be considered as a potential agent for colon cancer therapy.

五子 추출물이 Leydig 세포 내 testosterone 합성에 미치는 영향 (Effects of Extracts from Oja on Testosterone Synthesis in Leydig Cells)

  • 김계엽;이홍균;김은정
    • 동의생리병리학회지
    • /
    • 제29권5호
    • /
    • pp.403-408
    • /
    • 2015
  • Traditionally, 5 kinds of fruits with "ja(子)" in their name, including Rubus coreanus, Schisandra chinensis, Lycinum chineuse, Torilidis fructus, and Cuscuta seed, collectively called Oja(五子), are long known to enhance stamina. In the present study, we replaced tosaja with gyeolmyeongja(Cassiae semen ) and examined the effects of extracts from these fruits on andropause. This study investigated the antioxidant effect and testosterone synthesis of Oja water extract on Leydig TM3 cells. To investigate whether hydrogen peroxide induces oxidative stress in Leydig cells, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay, nitric oxide assay, and testosterone assay were performed on mouse Leydig TM3 cells. The results were obtained as follows: Leydig TM3 cells viability was assessed by a modified MTT assay, and the protection effect of Oja water extract against hydrogen peroxide-induced cell oxidative stress were examined by mitochondrial activity. Oja water extract could efficiently protect cytotoxicity induced by H2O2. Oja water extract promoted testosterone synthesis. These results suggest that Oja water extract has protective roles and promotes steroidogenesis in Leydig cells through its anti-oxidant action.

귀비탕이 Glutamate에 의한 C6 Glial Cell의 Apoptosis에 미치는 영향 (Effects of Gwibitang on Glutamate-induced Apoptosis in C6 Glial Cells)

  • 강익현;이인;한상혁;문병순
    • 대한한의학회지
    • /
    • 제22권4호
    • /
    • pp.45-57
    • /
    • 2001
  • Objectives : The water extract of Gwibitang (GBT) has been traditionally used for treatment of psychologic disease and brain damage in Oriental Medicine, This study was designed to investigate the effect of GBT on the glutamate-induced toxicity of rat C6 glial cells. Methods : The cultured cells were pretreated with GBT and exposed to glutamate, The cell damage was assessed by using MTT assay and Hoechst, IC-l staining, Results : GBT had protective effects in glutamate-induced cytotoxicity, which was revealed as apoptosis characterized by chromatic condensation and the loss of mitochondrial membrane potential in C6 glial cells. However, GBT and glutamate had no effect in the activation of caspase family cysteine proteases including caspase-3, -8 and -9 proteasesin C6 glial ce]]s, GBT significantly recovered the depletion of GSH and inhibited the generation of $H_2O_2$ by glutamate in C6 glial cells. In addition, both GBT and antioxidants such as GSH and NAC protected the glutamate-induced cytotoxicity in C6 glial cells, indicating that GBT possibly has antioxidative effect. Moreover, GBT also inhibited the glutamate-induced degradation of $IkB{\alpha}$ in C6 glial cells, This result suggest that GBT has some inhibitory effects on the transcriptional activation of $NF-_{k}B$. Conclusions : GBT has protective effects in glutamate-induced cytotoxicity via an antioxidative mechanism.

  • PDF

비타민과 무기질의 새로운 영양학적 의미 (New Nutritional Concepts of Vitamins and Minerals)

  • 윤희상
    • Clinical and Experimental Pediatrics
    • /
    • 제48권12호
    • /
    • pp.1295-1309
    • /
    • 2005
  • Nowadays, the nutritional deficits are rarely seen in Korea. However, an increased availability of the highly palatable energy dense, nutrient-poor foods increases the risks of obesity and deficits of vitamins and minerals in the general population. Also, optimum intake of vitamins and minerals, which varies with age and genetic back ground, might not suffice the poor, young, obese, and elderly people. Young girls and individuals participating in weight reductions and aesthetic components are prone to micronutrient deficiencies because they restrict food intake and specific micronutrient rich foods. An inadequate intake of vitamins or minerals is associated with reduced physical performance and exercise capacity, increased obesity, decreased cognitive function, increased DNA damages such as single- and double-stranded breaks or oxidative DNA lesions, and accelerated aging process and increased neuronal damages with mitochondrial oxidative decay. Most of these deleterious effects of the deficit could be prevented by a one tablet of multivitamins with a good balanced diet. High dose B vitamins are frequently administered to overcome the metabolic inadequacy to the people with the less functional enzymes with increased Km values for their coenzymes due to the single gene mutation or due to the single nucleotide polymorphisms. And some certain antioxidant vitamins are also used in large quantities to overcome the oxidative stress and to repair the damages. In this review, new nutritional concepts of some vitamins and minerals, which are widely used and useful for the children, will be discussed.

Protective Effect of Fisetin (3,7,3',4'-Tetrahydroxyflavone) against γ-Irradiation-Induced Oxidative Stress and Cell Damage

  • Piao, Mei Jing;Kim, Ki Cheon;Chae, Sungwook;Keum, Young Sam;Kim, Hye Sun;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제21권3호
    • /
    • pp.210-215
    • /
    • 2013
  • Ionizing radiation can induce cellular oxidative stress through the generation of reactive oxygen species, resulting in cell damage and cell death. The aim of this study was to determine whether the antioxidant effects of the flavonoid fisetin (3,7,3',4'-tetrahydroxyflavone) included the radioprotection of cells exposed to ${\gamma}$-irradiation. Fisetin reduced the levels of intracellular reactive oxygen species generated by ${\gamma}$-irradiation and thereby protected cells against ${\gamma}$-irradiation-induced membrane lipid peroxidation, DNA damage, and protein carbonylation. In addition, fisetin maintained the viability of irradiated cells by partially inhibiting ${\gamma}$-irradiation-induced apoptosis and restoring mitochondrial membrane potential. These effects suggest that the cellular protective effects of fisetin against ${\gamma}$-irradiation are mainly due to its inhibition of reactive oxygen species generation.

엉겅퀴로부터 분리 정제한 Silymarin 및 Silybin의 지질 과산화에 대한 항산화 효과 (Antioxidative Effects of Silymarin and Silybin Purified from Silybum marianum on Lipid Peroxidation)

  • 이백천;박종옥;류병호
    • 한국식품영양학회지
    • /
    • 제10권1호
    • /
    • pp.37-43
    • /
    • 1997
  • 본 연구는 지질의 과산화에 대한 항산화 효과를 조사하기 위하여 엉겅퀴(Silybum marianum)로부터 silymarin 및 silybin을 정제하여 실험하였다. Silymarin 및 silybin은 xanthine oxidase system에서 superoxide anion의 생성을 억제하였다. 쥐의 간 mitochondria에서는 silymarin 및 silybin은 reduced nicotinamide adenine dinucleotide phosphate(NADPH)에 의해 효과적 또는 ascorbic acid 또는 Fenton's reagent에 의하여 비효소적으로 유도되는 지질의 과산화를 억제하였다. 또 mitochondria의 지질과산화도 silymarin 및 silybin에 의하여 억제되었고 NADPH 의존 cychrome P-450 reductase에 의한 Fe2+의 산화도 silymarin 및 silybin에 의하여 억제되었다. Silymarin 및 silybin은 microsome의 효소 시스템 및 linoleic acid hydroperoxide induced peroxidation system에서 지질의 과산화의 연쇄반응에서 유리기의 억제효과가 있었다.

  • PDF

Ginsenoside Rd and ischemic stroke; a short review of literatures

  • Nabavi, Seyed Fazel;Sureda, Antoni;Habtemariam, Solomon;Nabavi, Seyed Mohammad
    • Journal of Ginseng Research
    • /
    • 제39권4호
    • /
    • pp.299-303
    • /
    • 2015
  • Panax ginseng is a well-known economic medical plant that is widely used in Chinese traditional medicine. This species contains a unique class of natural products-ginsenosides. Recent clinical and experimental studies have presented numerous lines of evidence on the promising role of ginsenosides on different diseases including neurodegenerative diseases, cardiovascular diseases, and certain types of cancer. Nowadays, most of the attention has focused on ginsenoside Rd as a neuroprotective agent to attenuate ischemic stroke damages. Some of the evidence showed that ginsenoside Rd ameliorates ischemic stroke-induced damages through the suppression of oxidative stress and inflammation. Ginsenoside Rd can prolong neural cells' survival through the upregulation of the endogenous antioxidant system, phosphoinositide-3-kinase/AKT and extracellular signal-regulated protein kinase 1/2 pathways, preservation of mitochondrial membrane potential, suppression of the nuclear factor-kappa B, transient receptor potential melastatin, acid sensing ion channels 1a, poly(ADP-ribose) polymerase-1, protein tyrosine kinase activation, as well as reduction of cytochrome c-releasing and apoptosis-inducing factor. In the current work, we review the available reports on the promising role of ginsenoside Rd on ischemic stroke. We also discuss its chemistry, source, and the molecular mechanism underlying this effect.