• 제목/요약/키워드: mitochondrial DNA mutation

검색결과 45건 처리시간 0.018초

소아 IgA 신병증 환자에서 미토콘드리아 DNA 돌연변이 분석 (Mutational Analysis of Mitochondria DNA in Children with IgA Nephropathy)

  • 엄태민;장창한;김형규;김나리;정윤서;한진;정우영
    • Childhood Kidney Diseases
    • /
    • 제16권2호
    • /
    • pp.73-79
    • /
    • 2012
  • 목적: 일부 사구체 질환 그리고 말기 신부전 환자를 대상으로 한 연구들에서 특정 부위의 돌연변이와 deletion 그리고 미토콘드리아 DNA copy 수 등이 예후적인 경과와 관련이 있다는 주장이 제기되었다. 연구자들은 소아 IgA 신병증 환자를 대상으로 혈소판을 이용한 미토콘드리아 DNA 전체 염기서열 분석을 실시하였다. 방법: 인제의대 부산백병원 소아청소년과에서 신생검을 실시하여 IgA 신병증으로 확진된 7명의 환자를 대상으로 하였다. 대상 환아들은 동반된 전신질환이 없고 가족력상 신장질환이 없는 경우로 국한 하였다. 신생검 당시 혈청 크레아티닌 치와 사구체 여과율은 모두에서 정상 범위였으며, 각각의 연령 대에 정상 범위의 혈압을 보였다. 환자의 성별은 남자 4명 여자 3명 이었다. 환자들은 단백뇨의 정도에 따라 두 군으로 분류하였다. 결과: 신생검 당시 환자들의 평균 나이는 $11.5{\pm}2.2$세 였으며 최종 추적검사 당시의 나이는 평균 $17.9{\pm}3.2$세 였다. 환자들의 평균 추적관찰 기간은 평균 $7.8{\pm}3.1$년 이었다. 환자들은 입원당시 단백뇨의 정도에 따라 2군으로 분류하였다. 1군은 입원당시 단백뇨가 동반되지 않았던 환자들이며 2군은 신증후군의 임상 양상을 보인 환자들이었다. 최종 추적 관찰 당시 양군의 혈청 크레아티닌 치, BUN은 모두 정상 범위였다. 혈청 알부민 치는 2군에서 $3.7{\pm}0.6g/dL$로 1군의 $4.7{\pm}0.2g/dL$에 비해 유의하게 낮았으며(P=0.0241), 혈청 콜레스테롤치는 2군에서 $222.7{\pm}35.7mg/dL$로 1군의 $148.3{\pm}29.1mg$ 보다 유의하게 높았다(P=0.0283). 24시간 채집뇨상의 총단백량도 2군에서 $1,466.0{\pm}742.5\;gm$으로 1군의 $122.5{\pm}48.1\;gm$에 비해 유의하게 높았다(P=0.0135). 단회 소변을 이용한 단백/크레아티닌 비는 2군에서 $1.8{\pm}1.6$으로 1군의 $0.2{\pm}0.2$에 비해 높았으나(P=0.0961), 통계적인 유의성은 없었다. 2명의 환자에서 8,272-8,281(CCCCCTCTA) 부위 염기서열 누락을 관찰되었다. 단백뇨 정도에 따라 분류한 두군 모두에서 각각 한명씩 염기 서열의 누락이 있었다. 누락된 부위는 미토콘드리아 유래 발현되는 단백질 서열 등에 관련 없는 비부호화부위(non coding region) 이었다. 8,272-8,281 부위를 제외한 미토콘드리아 DNA 염기서열은 모두 정상이었다. 결론: 소아 IgA 신병증에서도 mtDNA common deletion이 증명됨으로해서 향후 소아 IgA 신병증에서 미토콘드리아의 기능 이상이 진행성 임상적 경과에 어떠한 영향을 미칠 수 있는 지에 대한 추가 연구가 필요하다고 생각한다.

Etoxazole 저항성 점박이응애의 미토콘드리아 유전자 서열 분석 (Analysis of Mitochondrial Gene Sequence in Etoxazole Resistant Two-Spotted Spider Mite, Tetranychus urticae)

  • 박상은;구현나;윤창만;최장전;김길하
    • 농약과학회지
    • /
    • 제16권1호
    • /
    • pp.54-61
    • /
    • 2012
  • 점박이응애는 전 세계적으로 농업과 원예 분야에 경제적 손실을 일으키는 중요한 해충으로 많은 살비제에 대해 저항성이 발달하여 방제에 어려움을 겪고 있다. 2000년 8월 충남 부여의 장미 재배지에서 채집한 점박이응애가 etoxazole에 대해 3,700배의 저항성을 나타내었다. 이 집단을 실내에서 11년 동안 etoxazole로 500회 이상 도태하여 5,000,000배 이상의 저항성 계통을 얻었다. Etoxazole 저항성은 모계유전 하는 것으로 알려져 있다. 따라서 이들 etoxazole 저항성이 모계유전을 하는 미토콘드리아 유전자내 점 돌연변이와 관련이 있는지를 조사하였다. Etoxazole 저항성 계통과 감수성 계통의 CYTB, COX1, COX2, COX3, ND1, ND2, ND3, ND4, ND5, 그리고 ND6의 유전자 서열을 비교한 결과 저항성 계통에서의 점 돌연변이는 발견할 수 없었다.

The Mitochondrial Warburg Effect: A Cancer Enigma

  • Kim, Hans H.;Joo, Hyun;Kim, Tae-Ho;Kim, Eui-Yong;Park, Seok-Ju;Park, Ji-Kyoung;Kim, Han-Jip
    • Interdisciplinary Bio Central
    • /
    • 제1권2호
    • /
    • pp.7.1-7.7
    • /
    • 2009
  • "To be, or not to be?" This question is not only Hamlet's agony but also the dilemma of mitochondria in a cancer cell. Cancer cells have a high glycolysis rate even in the presence of oxygen. This feature of cancer cells is known as the Warburg effect, named for the first scientist to observe it, Otto Warburg, who assumed that because of mitochondrial malfunction, cancer cells had to depend on anaerobic glycolysis to generate ATP. It was demonstrated, however, that cancer cells with intact mitochondria also showed evidence of the Warburg effect. Thus, an alternative explanation was proposed: the Warburg effect helps cancer cells harness additional ATP to meet the high energy demand required for their extraordinary growth while providing a basic building block of metabolites for their proliferation. A third view suggests that the Warburg effect is a defense mechanism, protecting cancer cells from the higher than usual oxidative environment in which they survive. Interestingly, the latter view does not conflict with the high-energy production view, as increased glucose metabolism enables cancer cells to produce larger amounts of both antioxidants to fight oxidative stress and ATP and metabolites for growth. The combination of these two different hypotheses may explain the Warburg effect, but critical questions at the mechanistic level remain to be explored. Cancer shows complex and multi-faceted behaviors. Previously, there has been no overall plan or systematic approach to integrate and interpret the complex signaling in cancer cells. A new paradigm of collaboration and a well-designed systemic approach will supply answers to fill the gaps in current cancer knowledge and will accelerate the discovery of the connections behind the Warburg mystery. An integrated understanding of cancer complexity and tumorigenesis is necessary to expand the frontiers of cancer cell biology.

Pro-Apoptotic Role of the Human YPEL5 Gene Identified by Functional Complementation of a Yeast moh1Δ Mutation

  • Lee, Ji Young;Jun, Do Youn;Park, Ju Eun;Kwon, Gi Hyun;Kim, Jong-Sik;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.633-643
    • /
    • 2017
  • To examine the pro-apoptotic role of the human ortholog (YPEL5) of the Drosophila Yippee protein, the cell viability of Saccharomyces cerevisiae mutant strain with deleted MOH1, the yeast ortholog, was compared with that of the wild-type (WT)-MOH1 strain after exposure to different apoptogenic stimulants, including UV irradiation, methyl methanesulfonate (MMS), camptothecin (CPT), heat shock, and hyperosmotic shock. The $moh1{\Delta}$ mutant exhibited enhanced cell viability compared with the WT-MOH1 strain when treated with lethal UV irradiation, 1.8 mM MMS, $100{\mu}M$ CPT, heat shock at $50^{\circ}C$, or 1.2 M KCl. At the same time, the level of Moh1 protein was commonly up-regulated in the WT-MOH1 strain as was that of Ynk1 protein, which is known as a marker for DNA damage. Although the enhanced UV resistance of the $moh1{\Delta}$ mutant largely disappeared following transformation with the yeast MOH1 gene or one of the human YPEL1-YPEL5 genes, the transformant bearing pYES2-YPEL5 was more sensitive to lethal UV irradiation and its UV sensitivity was similar to that of the WT-MOH1 strain. Under these conditions, the UV irradiation-induced apoptotic events, such as FITC-Annexin V stainability, mitochondrial membrane potential (${\Delta}{\psi}m$) loss, and metacaspase activation, occurred to a much lesser extent in the $moh1{\Delta}$ mutant compared with the WT-MOH1 strain and the mutant strain bearing pYES2-MOH1 or pYES2-YPEL5. These results demonstrate the functional conservation between yeast Moh1 and human YPEL5, and their involvement in mitochondria-dependent apoptosis induced by DNA damage.

Role of Citrate Synthase in Acetate Utilization and Protection from Stress-Induced Apoptosis

  • Lee, Yong-Joo;Kang, Hong-Yong;Maeng, Pil Jae
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2008년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.39-41
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has been shown to contain three isoforms of citrate synthase (CS). The mitochondrial CS, Cit1, catalyzes the first reaction of the TCA cycle, i.e., condensation of acetyl-CoA and oxaloacetate to form citrate [1]. The peroxisomal CS, Cit2, participates in the glyoxylate cycle [2]. The third CS is a minor mitochondrial isofunctional enzyme, Cit3, and related to glycerol metabolism. However, the level of its intracellular activity is low and insufficient for metabolic needs of cells [3]. It has been reported that ${\Delta}cit1$ strain is not able to grow with acetate as a sole carbon source on either rich or minimal medium and that it shows a lag in attaining parental growth rates on nonfermentable carbon sources [2, 4, 5]. Cells of ${\Delta}cit2$, on the other hand, have similar growth phenotype as wild-type on various carbon sources. Thus, the biochemical basis of carbon metabolism in the yeast cells with deletion of CIT1 or CIT2 gene has not been clearly addressed yet. In the present study, we focused our efforts on understanding the function of Cit2 in utilizing $C_2$ carbon sources and then found that ${\Delta}cit1$ cells can grow on minimal medium containing $C_2$ carbon sources, such as acetate. We also analyzed that the characteristics of mutant strains defective in each of the genes encoding the enzymes involved in TCA and glyoxylate cycles and membrane carriers for metabolite transport. Our results suggest that citrate produced by peroxisomal CS can be utilized via glyoxylate cycle, and moreover that the glyoxylate cycle by itself functions as a fully competent metabolic pathway for acetate utilization in S. cerevisiae. We also studied the relationship between Cit1 and apoptosis in S. cerevisiae [6]. In multicellular organisms, apoptosis is a highly regulated process of cell death that allows a cell to self-degrade in order for the body to eliminate potentially threatening or undesired cells, and thus is a crucial event for common defense mechanisms and in development [7]. The process of cellular suicide is also present in unicellular organisms such as yeast Saccharomyces cerevisiae [8]. When unicellular organisms are exposed to harsh conditions, apoptosis may serve as a defense mechanism for the preservation of cell populations through the sacrifice of some members of a population to promote the survival of others [9]. Apoptosis in S. cerevisiae shows some typical features of mammalian apoptosis such as flipping of phosphatidylserine, membrane blebbing, chromatin condensation and margination, and DNA cleavage [10]. Yeast cells with ${\Delta}cit1$ deletion showed a temperature-sensitive growth phenotype, and displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e., ROS accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation, when exposed to heat stress. Upon long-term cultivation, ${\Delta}cit1$ cells showed increased potentials for both aging-induced apoptosis and adaptive regrowth. Activation of the metacaspase Yca1 was detected during heat- or aging-induced apoptosis in ${\Delta}cit1$ cells, and accordingly, deletion of YCA1 suppressed the apoptotic phenotype caused by ${\Delta}cit1$ mutation. Cells with ${\Delta}cit1$ deletion showed higher tendency toward glutathione (GSH) depletion and subsequent ROS accumulation than the wild-type, which was rescued by exogenous GSH, glutamate, or glutathione disulfide (GSSG). Beside Cit1, other enzymes of TCA cycle and glutamate dehydrogenases (GDHs) were found to be involved in stress-induced apoptosis. Deletion of the genes encoding the TCA cycle enzymes and one of the three GDHs, Gdh3, caused increased sensitivity to heat stress. These results lead us to conclude that GSH deficiency in ${\Delta}cit1$ cells is caused by an insufficient supply of glutamate necessary for biosynthesis of GSH rather than the depletion of reducing power required for reduction of GSSG to GSH.

  • PDF