• 제목/요약/키워드: mitochondrial

Search Result 2,781, Processing Time 0.031 seconds

Nicotinamide riboside regulates inflammation and mitochondrial markers in AML12 hepatocytes

  • Lee, Hee Jae;Yang, Soo Jin
    • Nutrition Research and Practice
    • /
    • v.13 no.1
    • /
    • pp.3-10
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: The $NAD^+$ precursor nicotinamide riboside (NR) is a type of vitamin $B_3$ found in cow's milk and yeast-containing food products such as beer. Recent studies suggested that NR prevents hearing loss, high-fat diet-induced obesity, Alzheimer's disease, and mitochondrial myopathy. The objective of this study was to investigate the effects of NR on inflammation and mitochondrial biogenesis in AML12 mouse hepatocytes. MATERIALS/METHODS: A subset of hepatocytes was treated with palmitic acid (PA; $250{\mu}M$) for 48 h to induce hepatocyte steatosis. The hepatocytes were treated with NR ($10{\mu}M$ and 10 mM) for 24 h with and without PA. The cell viability and the levels of sirtuins, inflammatory markers, and mitochondrial markers were analyzed. RESULTS: Cytotoxicity of NR was examined by PrestoBlue assay. Exposure to NR had no effect on cell viability or morphology. Gene expression of sirtuin 1 (Sirt1) and Sirt3 was significantly upregulated by NR in PA-treated hepatocytes. However, Sirt1 activities were increased in hepatocytes treated with low-dose NR. Hepatic pro-inflammatory markers including tumor necrosis factor-alpha and interleukin-6 were decreased in NR-treated cells. NR upregulated anti-inflammatory molecule adiponectin, and, tended to down-regulate hepatokine fetuin-A in PA-treated hepatocytes, suggesting its inverse regulation on these cytokines. NR increased levels of mitochondrial markers including peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$, carnitine palmitoyltransferase 1, uncoupling protein 2, transcription factor A, mitochondrial and mitochondrial DNA in PA-treated hepatocytes. CONCLUSIONS: These data demonstrated that NR attenuated hepatic inflammation and increased levels of mitochondrial markers in hepatocytes.

Effects of isorhamnetin on the regulation of mitochondrial function in C2C12 muscle cells (Isorhamnetin의 근육세포 미토콘드리아 기능조절에 미치는 효과)

  • Lee, Mak-Soon;Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.54 no.4
    • /
    • pp.335-341
    • /
    • 2021
  • Purpose: Muscle mitochondria play a key role in regulating fatty acid and glucose metabolism. Dysfunction of muscle mitochondria is associated with metabolic diseases such as obesity and type 2 diabetes. Isorhamnetin (ISOR), also known as 3-O-methylquercetin, a quercetin metabolite, is a naturally occurring flavonoid in many plants. This study evaluated the effects of ISOR on the regulation of the mitochondrial function of C2C12 muscle cells. Methods: C2C12 muscle cells were differentiated for 5 days, and then treated in various concentrations of ISOR. Cytotoxicity was determined by assessing cell viability using the water-soluble tetrazolium salt-8 assay principle at different concentrations of ISOR and time points. Levels of the mitochondrial DNA (mtDNA) content and gene expression were measured by quantitative real-time polymerase chain reaction. The citrate synthase (CS) activity was quantified by the enzymatic method. Results: ISOR at a concentration of 10 µM did not show any cytotoxic effects. ISOR increased the mtDNA copy number in a time- or dose-dependent manner. The messenger RNA levels of genes involved in mitochondrial function, such as peroxisome proliferator-activated receptor-γ coactivator-1α, and uncoupling protein 3 were significantly stimulated by the ISOR treatment. The CS activity was also significantly increased in a time- or dose-dependent manner. Conclusion: These results suggest that ISOR enhances the regulation of mitochondrial function, which was at least partially mediated via the stimulation of the mtDNA replication, mitochondrial gene expression, and CS activity in C2C12 muscle cells. Therefore, ISOR may be useful as a potential food ingredient to prevent metabolic diseases-associated muscle mitochondrial dysfunction.

Cadmium exposure impairs porcine embryonic development by inducing oxidative stress and mitochondrial dysfunction

  • Min Ju Kim;Se‑Been Jeon;Hyo‑Gu Kang;Bong‑Seok Song;Bo‑Woong Sim;Sun‑Uk Kim;Pil‑Soo Jeong;Seong‑Keun Cho
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.48-57
    • /
    • 2024
  • Background: Cadmium (Cd) is toxic heavy metal that accumulates in organisms after passing through their respiratory and digestive tracts. Although several studies have reported the toxic effects of Cd exposure on human health, its role in embryonic development during preimplantation stage remains unclear. We investigated the effects of Cd on porcine embryonic development and elucidated the mechanism. Methods: We cultured parthenogenetic embryos in media treated with 0, 20, 40, or 60 µM Cd for 6 days and evaluated the rates of cleavage and blastocyst formation. To investigate the mechanism of Cd toxicity, we examined intracellular reactive oxygen species (ROS) and glutathione (GSH) levels. Moreover, we examined mitochondrial content, membrane potential, and ROS. Results: Cleavage and blastocyst formation rates began to decrease significantly in the 40 µM Cd group compared with the control. During post-blastulation, development was significantly delayed in the Cd group. Cd exposure significantly decreased cell number and increased apoptosis rate compared with the control. Embryos exposed to Cd had significantly higher ROS and lower GSH levels, as well as lower expression of antioxidant enzymes, compared with the control. Moreover, embryos exposed to Cd exhibited a significant decrease in mitochondrial content, mitochondrial membrane potential, and expression of mitochondrial genes and an increase in mitochondrial ROS compared to the control. Conclusions: We demonstrated that Cd exposure impairs porcine embryonic development by inducing oxidative stress and mitochondrial dysfunction. Our findings provide insights into the toxicity of Cd exposure on mammalian embryonic development and highlight the importance of preventing Cd pollution.

Microsatellite Instability of Nuclear and Mitochondrial DNAs in Gastric Carcinogenesis

  • Lee, Jae-Ho;Kim, Dae-Kwang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8027-8034
    • /
    • 2014
  • Genetic instability contributes to the development and progression of gastric cancer, one of the leading causes of cancer death worldwide. Microsatellite instability (MSI) has been hypothesized to be involved in carcinogenesis, althgough its mechanisms and exact roles in gastric cancer remain largely unknown. Our aim was to identify associated clinicopathological characteristics and prognostic value of MSI in gastric cancer and precancerous lesions including gastritis, metaplasia, dysplasia, and adenoma. Because mitochondrial DNA has a different genetic system from nuclear DNA, the results of both nuclear MSI and mitochondrial MSI in gastric cancer were reviewed. This review provides evidence that genetic instability of nuclear and mitochondrial DNAs contributes to early stages of gastric carcinogenesis and suggests possible roles in predicting prognosis.

Niclosamide induces mitochondria fragmentation and promotes both apoptotic and autophagic cell death

  • Park, So-Jung;Shin, Ji-Hyun;Kang, Hee;Hwang, Jung-Jin;Cho, Dong-Hyung
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.517-522
    • /
    • 2011
  • Mitochondrial dynamics not only involves mitochondrial morphology but also mitochondrial biogenesis, mitochondrial distribution, and cell death. To identify specific regulators to mitochondria dynamics, we screened a chemical library and identified niclosamide as a potent inducer of mitochondria fission. Niclosamide promoted mitochondrial fragmentation but this was blocked by down-regulation of Drp1. Niclosamide treatment resulted in the disruption of mitochondria membrane potential and reduction of ATP levels. Moreover, niclosamide led to apoptotic cell death by caspase-3 activation. Interestingly, niclosamide also increased autophagic activity. Inhibition of autophagy suppressed niclosamide-induced cell death. Therefore, our findings suggest that niclosamide induces mitochondria fragmentation and may contribute to apoptotic and autophagic cell death.

Restriction and transcription maps of mitochondrial DNA of trimorphomyces papilionaceus

  • Jeoung, Won-Jin;Hong, Soon-Gyu;Won, Kang-Young;Jung, Hack-Sung
    • Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.149-153
    • /
    • 1995
  • Mitochondrial DNA has been isolated from Trimorphomyces papilionaceus. By analyzing DNA fragments digested by restriction enzymes, a restriction site map has been constructured. The mtDNA of T. papilionaceus amounts to 48.5 kb in size and is circular in structure. Entire mitochondrial DNA was cloned in E coli plasmids and Northern blot hybridization was done using cloned and subcloned DNAs as probes. Based on hybridization results of mitochondrial RNA transcripts, a transcription map was prepared.

  • PDF

Studies on Light-Induced Mitochondrial ATPase in Pleurotus ostreatus -Effects of Organic Compounds- (느타리버섯 중의 Light-Induced Mitochondrial ATPase에 관한 연구 -유기물 효과-)

  • Lee, Ho-Yeon;Min, Tai-Jin
    • The Korean Journal of Mycology
    • /
    • v.20 no.1
    • /
    • pp.51-57
    • /
    • 1992
  • Mitochondria in Pleurotus ostreatus were isolated and purified by stepped sucrose density gradient centrifugation, to compare the effects of organic compound on the activities of mitochondrial ATPase in Basidiomycotina with those in mammalian cell. The effects of N, N'-dicycio-hexylcarbodiimide (DCCD), carbonyl cyanide m-chlorophenylhydrazone (CCCP), sodium azide and aurovertin known as compounds to be related to electron transfer system in mitochondria were studied. A activity of mitochondrial ATPase was inhibited by 64%, 57% and 53% in the presence of 0.25 mM DCCD, 0.02 mM sodium azide and 1.5 $({\mu}g/mg\;of\;protein)$ aurovertin B, respectively. It was stimulated by 22% in the presence of 0.15 ${\mu}M$ CCCP.

  • PDF

RFLPs of Mitochondrial DNA in Korean Wild Soybeans

  • Ouk-Kyu, Han;Jun, Abe
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.243-247
    • /
    • 1999
  • Mitochondrial DNA restriction fragment length polymorphisms are convenient markers for identifying cytoplasmic variation among plants. We have collected 212 wild soybeans (Glycine soja Sieb. et Zucc) from all over Korea, and classified mitochondrial genome types based on hybridization patterns in DNA gel-blot analyses using two mitochondrial DNA clones, cox2 and atp6, as probes. Korean wild soybean was classified with eight-mtDNA types, and some of the mtDNAs showed geographical clines among the regions. The diversity index of the mtDNA was much higher in the western and southern regions than in the eastern and northern regions of Korea, respectively. Dissemination and distributive characteristics of wild soybeans in Korea were discussed.

  • PDF

The Complete Mitochondrial Genome of Dendronephthya gigantea (Anthozoa: Octocorallia: Nephtheidae)

  • Park, Eun-Ji;Kim, Bo-A;Won, Yong-Jin
    • Animal Systematics, Evolution and Diversity
    • /
    • v.26 no.3
    • /
    • pp.197-201
    • /
    • 2010
  • We sequenced the whole mitochondrial genome of Dendronephthya gigantea (Anthozoa: Octocorallia: Nephteidae), the first mitochondrial genome sequence report in the Family Nephtheidae. The mitochondrial genome of D. gigantea was 18,842 bp in length, and contained 14 protein coding genes (atp6 and 8, cox1-3, cytb, nd1-6 and 4L, and msh1), two ribosomal RNAs, and only one transfer RNA. The gene content and gene order is identical to other octocorals sequenced to date. The portion of the noncoding regions is slightly larger than the other octocorals (5.08% compared to average 3.98%). We expect that the information of gene content, gene order, codon usage, noncoding region and protein coding gene sequence could be used in the further analysis of anthozoan phylogeny.

The role of mitochondria in apoptosis

  • Jeong, Seon-Yong;Seol, Dai-Wu
    • BMB Reports
    • /
    • v.41 no.1
    • /
    • pp.11-22
    • /
    • 2008
  • Apoptosis (programmed cell death) is a cellular self-destruction mechanism that is essential for a variety of biological events, such as developmental sculpturing, tissue homeostasis, and the removal of unwanted cells. Mitochondria play a crucial role in regulating cell death. $Ca^{2+}$ has long been recognized as a participant in apoptotic pathways. Mitochondria are known to modulate and synchronize $Ca^{2+}$ signaling. Massive accumulation of $Ca^{2+}$ in the mitochondria leads to apoptosis. The $Ca^{2+}$ dynamics of ER and mitochondria appear to be modulated by the Bcl-2 family proteins, key factors involved in apoptosis. The number and morphology of mitochondria are precisely controlled through mitochondrial fusion and fission process by numerous mitochondria-shaping proteins. Mitochondrial fission accompanies apoptotic cell death and appears to be important for progression of the apoptotic pathway. Here, we highlight and discuss the role of mitochondrial calcium handling and mitochondrial fusion and fission machinery in apoptosis.