• Title/Summary/Keyword: mitigation potential

Search Result 304, Processing Time 0.031 seconds

Membrane-Based Direct Air Capture: A Review (막 기반 직접공기포집: 총설)

  • Seong Baek Yang;Kwang-Seop Im;Km Nikita;Sang Yong Nam
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.85-95
    • /
    • 2024
  • Direct air capture (DAC) technology plays a crucial role in mitigating climate change. Reports from the International Energy Agency and climate change emphasize its significance, aiming to limit global warming to 1.5 ℃ despite continuous carbon emissions. Despite initial costs, DAC technology demonstrates potential for cost reductions through research and development, operational learning, and economies of scale. Recent advancements in high-permeance polymer membranes indicate the potential of membrane-based DAC technology. However, effective separation of CO2 from ambient air requires membranes with high selectivity and permeability to CO2. Current research is focusing on membrane optimization to enhance CO2 capture efficiency. This study underscores the importance of direct air capture, evolving cost trends, and the pivotal role of membrane development in climate change mitigation efforts. Additionally, this research delved into the theoretical background, conditions, composition, advantages, and disadvantages of permeance and selectivity in membrane-based DAC.

Flood Risk Estimation Using Regional Regression Analysis (지역회귀분석을 이용한 홍수피해위험도 산정)

  • Jang, Ock-Jae;Kim, Young-Oh
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.71-80
    • /
    • 2009
  • Although desire for living without hazardous damages grows these days, threats from natural disasters which we are currently exposed to are quiet different from what we have experienced. To cope with this changing situation, it is necessary to assess the characteristics of the natural disasters. Therefore, the main purpose of this research is to suggest a methodology to estimate the potential property loss and assess the flood risk using a regional regression analysis. Since the flood damage mainly consists of loss of lives and property damages, it is reasonable to express the results of a flood risk assessment with the loss of lives and the property damages that are vulnerable to flood. The regional regression analysis has been commonly used to find relationships between regional characteristics of a watershed and parameters of rainfall-runoff models or probability distribution models. In our research, however, this model is applied to estimate the potential flood damage as follows; 1) a nonlinear model between the flood damage and the hourly rainfall is found in gauged regions which have sufficient damage and rainfall data, and 2) a regression model is developed from the relationship between the coefficients of the nonlinear models and socio-economic indicators in the gauged regions. This method enables us to quantitatively analyze the impact of the regional indicators on the flood damage and to estimate the damage through the application of the regional regression model to ungauged regions which do not have sufficient data. Moreover the flood risk map is developed by Flood Vulnerability Index (FVI) which is equal to the ratio of the estimated flood damage to the total regional property. Comparing the results of this research with Potential Flood Damage (PFD) reported in the Long-term Korea National Water Resources Plan, the exports' mistaken opinions could affect the weighting procedure of PFD, but the proposed approach based on the regional regression would overcome the drawback of PFD. It was found that FVI is highly correlated with the past damage, while PFD does not reflect the regional vulnerabilities.

Semi-active damped outriggers for seismic protection of high-rise buildings

  • Chang, Chia-Ming;Wang, Zhihao;Spencer, Billie F. Jr.;Chen, Zhengqing
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.435-451
    • /
    • 2013
  • High-rise buildings are a common feature of urban cities around the world. These flexible structures frequently exhibit large vibration due to strong winds and earthquakes. Structural control has been employed as an effective means to mitigate excessive responses; however, structural control mechanisms that can be used in tall buildings are limited primarily to mass and liquid dampers. An attractive alternative can be found in outrigger damping systems, where the bending deformation of the building is transformed into shear deformation across dampers placed between the outrigger and the perimeter columns. The outrigger system provides additional damping that can reduce structural responses, such as the floor displacements and accelerations. This paper investigates the potential of using smart dampers, specifically magnetorheological (MR) fluid dampers, in the outrigger system. First, a high-rise building is modeled to portray the St. Francis Shangri-La Place in Philippines. The optimal performance of the outrigger damping system for mitigation of seismic responses in terms of damper size and location also is subsequently evaluated. The efficacy of the semi-active damped outrigger system is finally verified through numerical simulation.

An Approach to Introduce Biodiversity Components for the EIA System in Korea

  • Kwon, Young-Han
    • Journal of Environmental Policy
    • /
    • v.7 no.2
    • /
    • pp.91-104
    • /
    • 2008
  • In foreign countries, efforts are in progress to apply guidelines to minimize the loss of biodiversity within environmental assessment, yet those efforts have not been considered in Korea. If this continues, biodiversity in our nation will quickly diminish. Therefore, Korea needs to urgently prepare guidelines that minimize the loss of biodiversity. In this study 32 environmental impact assessment statements on express-highway construction projects were analyzed to evaluate potential problems with the current EIA system and to provide ideas on how to introduce a biodiversity/ecosystem item into the system. In the analyses of the 32 statements, few contents that deal with habitat/biodiversity were found and a lack of assessment of biodiversity issues was noticed in the EIA system in Korea. The system, therefore, should be improved to consider biodiversity issues in the survey, to predict impacts on biodiversity, and to establish corresponding mitigation measures.

  • PDF

Questionnaire Survey on the Risk Perception in the Istanbul Strait

  • Aydogdu, Y. Volkan;Yurtoren, Cemil;Kum, Serdar;Park, Jin-Soo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.7
    • /
    • pp.517-523
    • /
    • 2010
  • There are enormous challenges in the Istanbul Strait- one of the most important, congested and narrow waterways in the world - from the view point of risk determination and risk mitigation for the local traffic. Previously several traffic parameters such as; traffic volume for local vessels, traffic flow and potential encounters of local traffic, in addition to the possibility of collision, were investigated in order to determine the degree of dangers in the southern entrance of the Istanbul Strait. Furthermore, risky zones were also determined in this waterway. On the basis of the results of those, a group of expert was surveyed. These experts were pilots, Vessel Traffic Services Operators (VTS-O), Local Traffic Vessel Captains and Master Mariners who had several experience of navigation through the Istanbul Strait. In order to assess experts perceptions of danger and to propose further studies based on this survey. The questionnaire was analyzed by using SPSS (Statistical Package for the Social Sciences) program version 13.0. Finally, some differences and/or shares on risk perceptions of expert in the Istanbul Strait are considered.

Study of nitrate concentration in Najaf Abad aquifer using GIS

  • Tabatabaei, Javad;Gorji, Leila
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.167-172
    • /
    • 2020
  • The effectiveness of in situ sediment capping as a technique for heavy metal risk mitigation in Hyeongsan River estuary, South Korea was studied. Sites in the estuary were found previously to show moderate to high levels of contamination of mercury, methylmercury and other heavy metals. A 400 m x 50 m section of the river was selected for a thin layer capping demonstration, where the total area was divided into 4 sections capped with different combinations of capping materials (zeolite, AC/zeolite, AC/sand, zeolite/sand). Pore water concentrations in the different sites were studied using diffusive gradient in thin film (DGT) probes. All capping amendments showed reduction in the pore water concentration of the different heavy metals with top 5 cm showing %reduction greater than 90% for some heavy metals. The relative maxima for the different metals were found to be translated to lower depths with addition of the caps. For two-layered cap with AC, order of placement should be considered since AC can easily be displaced due to its relatively low density. Investigation of methylmercury (MeHg) in the site showed that MeHg and %MeHg in pore water corresponds well with maxima for sulfide, Fe and Mn suggesting mercury methylation as probably coupled with sulfate, Fe and Mn reduction in sediments. Our results showed that thin-layer capping of active sorbents AC and zeolite, in combination with passive sand caps, are potential remediation strategy for sediments contaminated with heavy metals.

A Study on Risk Frequency Estimation of Runway End Safety Area (활주로종단안전구역의 위험빈도 추정 연구)

  • Kim, Do-Hyeon;Sheen, Dong-Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.3
    • /
    • pp.34-41
    • /
    • 2010
  • 'Aviation Safety' is the state in which the risk of harm to persons or of property damage is reduced to, and maintained at or below, an acceptable level through a continuing process of hazard identification and risk management in the aviation field. 'Risk' is the assessed potential for adverse consequences resulting from a hazard and 'Risk assessment' involves consideration of both the frequency and the severity of any adverse consequence. This study focused on the risk frequency about a case airport which does not meet the 'Runway end safety area' requirement of ICAO SARPs and Korea standards and used 'RSA risk model' for estimating the risk frequency. As results of this study, risk frequency of the runway end safety areas in the case airport is higher than that of 'Runway end safety area' requirement of ICAO SARPs and Korea standards, which means that alternatives for risk frequency mitigation to a level as low as reasonably practicable is required in the case airport. The optimum solution analysed from this study is to impose restriction of aircraft operation when the runway condition is poor(icing condition) and also it snows in the case airport.

Energy absorption of the ring stiffened tubes and the application in blast wall design

  • Liao, JinJing;Ma, Guowei
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.713-727
    • /
    • 2018
  • Thin-walled mental tubes under lateral crushing are desirable and reliable energy absorbers against impact or blast loads. However, the early formations of plastic hinges in the thin cylindrical wall limit the energy absorption performance. This study investigates the energy absorption performance of a simple, light and efficient energy absorber called the ring stiffened tube. Due to the increase of section modulus of tube wall and the restraining effect of the T-stiffener flange, key energy absorption parameters (peak crushing force, energy absorption and specific energy absorption) have been significantly improved against the empty tube. Its potential application in the offshore blast wall design has also been investigated. It is proposed to replace the blast wall endplates at the supports with the energy absorption devices that are made up of the ring stiffened tubes and springs. An analytical model based on beam vibration theory and virtual work theory, in which the boundary conditions at each support are simplified as a translational spring and a rotational spring, has been developed to evaluate the blast mitigation effect of the proposed design scheme. Finite element method has been applied to validate the analytical model. Comparisons of key design criterions such as panel deflection and energy absorption against the traditional design demonstrate the effectiveness of the proposed design in blast alleviation.

Development of Pre-Validation Program of Clean Development Mechanism for Renewable Energy (신재생에너지 사업의 청정개발체제 사전 타당성 평가 프로그램 개발)

  • Park, Jong-Bae;Jeong, Yun-Won;Lee, Woo-Nam;Lee, Sang-Hyung;Won, Sung-Hee;Hur, Bo-Yeon;Oh, Dae-Gyun;Ha, Gyung-Ae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.420-421
    • /
    • 2006
  • The cost-effective reduction of greenhouse gas(GHG) emission to avert the most severe impacts of climate change remains one of the widely accepted priorities for global action. In order to facilitate cost-effective abatement strategies, the Kyoto Protocol introduced three mechanisms, or flexible instruments, the Emissions Trading(ET), the Joint Implementation(JI) and the Clean Development Mechanism(CDM). The CDM enables Annex I countries to the Kyoto Protocol to partially meet cost-effectively their emission reduction commitments by undertaking GHG mitigation Projects in developing countries, which do not have any GHG abatement obligations and where the emission reductions are cheaper. One of the major barriers hampering the wide spread implementation of CDM is the high transaction costs associated with the initial identification of promising CDM projects. This paper presents development of a pre-validation program of CDM. The developed program may provide a useful aid to potential investors and project developers as a supportive pre-evaluation tool, and may become an effective tool for the promotion of renewable energy and fuel switching projects.

  • PDF

Vibration control in wind turbines for performance enhancement: A comparative study

  • Rezaee, Milad;Aly, Aly Mousaad
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.107-131
    • /
    • 2016
  • The need for a more affordable, reliable, clean and secure energy has led to explorations in non-traditional sources, particularly renewable energies. Wind is one of the cleanest energy sources that plays a significant role in augmenting sustainability. Wind turbines, as energy convertors, are usually tall and slender structures, and depending on their location (inland or offshore), they can be subject to high wind and/or strong wave loadings. These loads can cause severe vibrations with detrimental effects on energy production, structural lifecycle and initial cost. A dissipativity analysis study was carried out to know whether wind turbine towers require damping enhancement or rigidity modifications for vibration suppression. The results suggest that wind turbines are lightly damped structures and damping enhancement is a potential solution for vibration lessening. Accordingly, the paper investigates different damping enhancement techniques for vibration mitigation. The efficacy of tuned mass damper (TMD), tuned liquid column damper (TLCD), tuned sloshing damper (TSD), and viscous damper (VD) to reduce vibrations is investigated. A comparison among these devices, in terms of robustness and effectiveness, is conducted. The VD can reduce both displacement and acceleration responses of the tower, better than other types of dampers, for the same control effort, followed by TMD, TSD, and finally TLCD. Nevertheless, the use of VDs raises concerns about where they should be located in the structure, and their application may require additional design considerations.