• Title/Summary/Keyword: mitigate

Search Result 2,580, Processing Time 0.029 seconds

Ontology for estimating excavation duration for smart construction of hard rock tunnel projects under resource constraint

  • Yang, Shuhan;Ren, Zhihao;Kim, Jung In
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.222-229
    • /
    • 2022
  • Although stochastic programming and feedback control approaches could efficiently mitigate the overdue risks caused by inherent uncertainties in ground conditions, the lack of formal representations of planners' rationales for resource allocation still prevents planners from applying these approaches due to the inability to consider comprehensive resource allocation policies for hard rock tunnel projects. To overcome the limitations, the authors developed an ontology that represents the project duration estimation rationales, considering the impacts of ground conditions, excavation methods, project states, resources (i.e., given equipment fleet), and resource allocation policies (RAPs). This ontology consists of 5 main classes with 22 subclasses. It enables planners to explicitly and comprehensively represent the necessary information to rapidly and consistently estimate the excavation durations during construction. 10 rule sets (i.e., policies) are considered and categorized into two types: non-progress-related and progress-related policies. In order to provide simplified information about the remaining durations of phases for progress-related policies, the ontology also represents encoding principles. The estimation of excavation schedules is carried out based on a hypothetical example considering two types of policies. The estimation results reveal the feasibility, potential for flexibility, and comprehensiveness of the developed ontology. Further research to improve the duration estimation methodology is warranted.

  • PDF

Construction Delay Analysis Using Daily Work Report Data for Short Construction Seasons

  • Jamal, Md Shah;Abdelaty, Ahmed;Shrestha, K. Joseph
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.616-623
    • /
    • 2022
  • Some regions and states, such as Wyoming, have harsh weather conditions, forcing most transportation projects to be completed under tight schedules. However, construction projects are not only delayed by weather conditions, but also delayed by other factors such as contractor's competency, resource availability, coordination issues, and safety. Also, the construction method, geographical location of the projects, and inability to follow baseline schedules accurately due to the contractor's resource allocation are also reasons for the delay. This paper discusses the main reasons for the delay in the public transportation projects based on Daily Work Reports (DWRs) from five different transportation projects of the last three years in Wyoming. This paper focuses on the inconsistencies of the contractor's schedules to complete the project according to the baseline schedule. First, the authors collected DWRs and baseline schedules from the Wyoming Department of Transportation (WYDOT). Second, the DWR data are compared against the baseline schedules to determine the reasons for delaying their significance. Finally, the paper presents the recommendations to mitigate the effects of delays on public transportation projects as well as to improve the documentation process of DWR data.

  • PDF

Anti-inflammatory Effects of Herbal Formula KCNS-001 for Mitigating Atopic Dermatitis (한약조성물 KCNS-001이 자유라디칼과 염증매개인자에 미치는 영향)

  • Lee, Jeong-Bok;Choi, Jae-Hwan;Bang, Ok-Sun;Yu, Young-Beob
    • The Korea Journal of Herbology
    • /
    • v.24 no.3
    • /
    • pp.97-102
    • /
    • 2009
  • Objectives : We determined the anti-inflammatory activity of KCNS-001 that is a herbal formula including 6 medicinal plants and that are used to mitigate atopic dermatitis in oriental medicine. Methods : To evaluate anti-inflammatory effect of KCNS-001, we measured the production of reactive oxygen species (ROS), nitric oxide (NO) and cyclooxygenase-2 (COX-2) in LPS-activated Raw 264.7 cells. Cell viability was determined by MTT assay. The concentrations of ROS and relative level of NO were measured with DPPH assay and Griess reagent, respectively. COX-2 and TNF-$\alpha$ were detected by enzyme immuno assay (EIA) and enzyme-linked immunosorbent assay (ELISA). Results : ROS and NO production were reduced by KCNS-001 in a dose-dependent manner. KCNS-001 significantly inhibited activity of COX-2 and suppressed the release of tumor necrosis factor-alpha (TNF-$\alpha$). Conclusions : These results indicate that the KCNS-001 may have an anti-inflammatory agent for the treatment of various inflammatory disease.

Economic and Environmental Impact Analyses on Supply Chains for Importing Clean Hydrogen from Australia in the Republic of Korea (한국의 호주 청정 수소 수입을 위한 공급망의 경제성 및 환경영향 평가)

  • AYEON, KIM;CHANGGWON, CHOE;SEUNGHYUN, CHEON;HANKWON, LIM
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.6
    • /
    • pp.623-635
    • /
    • 2022
  • As global warming accelerates, clean hydrogen production becomes more important to mitigate it. However, importing hydrogen is necessary for countries that have high energy demands but insufficient resources to produce clean hydrogen. In line with the trend, this study investigated both the economic and environmental viability of an overseas hydrogen supply chain between Australia and the Republic of Korea. Several possible methods of water electrolysis and hydrogen carriers are compared and effect of renewable electricity price on the cost of hydrogen production is evaluated.

The Impact of Environmental Social Governance Management for Improving Gas Firm Performance

  • Seung-Chul LEE
    • The Journal of Industrial Distribution & Business
    • /
    • v.14 no.4
    • /
    • pp.23-31
    • /
    • 2023
  • Purpose: Gas firms often fall victim to disregarding the importance of sensitivity, thus leading to many unprecedented repercussions. To ensure that gas firms fully contribute to sustainability and ethical standards, environmental Social Governance (ESG) has been identified as the ideal framework. This study aims to investigate the impact of ESG management for improving gas firm performance. Research design, data and methodology: The prior qualitative literature analysis was to figure out adequate past research for the topic based on the major portal web databased, such as 'Google Scholar' and 'Scopus' to make sure resources' credibility. Results: Gas firms are among the pertinent organizations vis-à-vis environmental destruction issues. Gas firms emit dangerous gases such as ethane, carbon dioxide and methane that are dangerous for the people and the environment. Thus, many pro-environmental conservation stakeholders have had rallying calls for such gas firms to mitigate environmental pollution intentionally. Conclusions: This study may be used to human resources in improving employee results elsewhere. Besides, it can be of the essence in improving the relationship between such firms and society. Therefore, the study findings are of greater significance and implications to multiple parties, users and stakeholders regarding the research topic and beyond the current scope of the study.

FakedBits- Detecting Fake Information on Social Platforms using Multi-Modal Features

  • Dilip Kumar, Sharma;Bhuvanesh, Singh;Saurabh, Agarwal;Hyunsung, Kim;Raj, Sharma
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.51-73
    • /
    • 2023
  • Social media play a significant role in communicating information across the globe, connecting with loved ones, getting the news, communicating ideas, etc. However, a group of people uses social media to spread fake information, which has a bad impact on society. Therefore, minimizing fake news and its detection are the two primary challenges that need to be addressed. This paper presents a multi-modal deep learning technique to address the above challenges. The proposed modal can use and process visual and textual features. Therefore, it has the ability to detect fake information from visual and textual data. We used EfficientNetB0 and a sentence transformer, respectively, for detecting counterfeit images and for textural learning. Feature embedding is performed at individual channels, whilst fusion is done at the last classification layer. The late fusion is applied intentionally to mitigate the noisy data that are generated by multi-modalities. Extensive experiments are conducted, and performance is evaluated against state-of-the-art methods. Three real-world benchmark datasets, such as MediaEval (Twitter), Weibo, and Fakeddit, are used for experimentation. Result reveals that the proposed modal outperformed the state-of-the-art methods and achieved an accuracy of 86.48%, 82.50%, and 88.80%, respectively, for MediaEval (Twitter), Weibo, and Fakeddit datasets.

A Review of Data Management Techniques for Scratchpad Memory (스크래치패드 메모리를 위한 데이터 관리 기법 리뷰)

  • DOOSAN CHO
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.771-776
    • /
    • 2023
  • Scratchpad memory is a software-controlled on-chip memory designed and used to mitigate the disadvantages of existing cache memories. Existing cache memories have TAG-related hardware control logic, so users cannot directly control cache misses, and their sizes are large and energy consumption is relatively high. Scratchpad memory has advantages in terms of size and energy consumption because it eliminates such hardware overhead, but there is a burden on software to manage data. In this study, data management techniques of scratchpad memory were classified and examined, and ways to maximize the advantages were discussed.

Channel Transfer Function estimation based on Delay and Doppler Profiler for 5G System Receiver targeting 500km/h linear motor car

  • Suguru Kuniyoshi;Shiho Oshiro;Gennan Hayashi;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.121-127
    • /
    • 2023
  • A 500 km/h linear motor high speed terrestrial transportation service is planned to launch 2027 in Japan. In order to support 5G service in the train, the Sub-carrier spacing frequency of 30 kHz is planned to be used instead of common 15 kHz sub-carrier spacing to mitigate Doppler effect in such high-speed transportation. In addition, to increase the cell size of 5G mobile system, plural Base Station antenna will transmit the identical Down Link (DL) signal to form the expanded cell size along the train rail. In this situation, forward and backward antenna signals will be Doppler shifted by reverse direction respectively and the receiver in the train might suffer to estimate accurate Channel Transfer Function (CTF) for its demodulation. In this paper, Delay and Doppler Profiler (DDP) based Channel Estimator is proposed and it is successfully implemented in signal processing simulation system. Then the simulated performances are compared with the conventional Time domain linear interpolated estimator. According to the simulation results, QPSK modulation can be used even under severe channel condition such as 500 km/h, 2 path reverse Doppler Shift condition, although QPSK modulation can be used less than 200 km/h with conventional Channel estimator.

Corrosion behavior of aluminum alloy in simulated nuclear accident environments regarding the chemical effects in GSI-191

  • Da Wang ;Amanda Leong;Qiufeng Yang ;Jinsuo Zhang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4062-4071
    • /
    • 2022
  • Long-term aluminum (Al) corrosion tests were designed to investigate the condition that would generate severe Al corrosion and precipitation. Buffer agents of sodium tetraborate (NaTB), trisodium phosphate (TSP) and sodium hydroxide (NaOH) were adopted. The insulation materials, fiberglass and calcium silicate (Ca-sil), were examined to explore their effects on Al corrosion. The results show that significant precipitates were formed in both NaTB/TSP-buffered solutions at high pH. The precipitates formed in NaTB solution raise more concerns on chemical effects in GSI-191. A passivation layer formed on the surfaces of coupon in solution with the presence of insulations could effectively mitigate Al corrosion. The Fe-enriched intermetallic particles (IPs) embedded in coupon appeared to serve as seeds to readily induce precipitation via providing extra area for heterogeneous Al hydroxide precipitation. X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses indicate that the precipitates are mainly boehmite (γ-AlOOH) and no direct evidence confirms the presence of sodium aluminum silicate or calcium phosphate.

Investigation of decontamination characteristics of a serial multiple pool scrubber system for consequence mitigation of severe accidents

  • Hyeon Ho Byun;Man-Sung Yim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4585-4600
    • /
    • 2022
  • A pool scrubber is often used as a wet-type design to mitigate the consequence of a severe nuclear accident. While studies indicated higher decontamination performance of a deeper pool, utilizing a very tall pool can be problematic due to potential structural stability and water backflow issues. This study proposes, as an alternative to a single pool system, a pool scrubber system composed of serially connected multiple pools with lower heights. Since large fraction of aerosol removal takes place in the injection region, serially connected pool scrubber system is expected to enhance the overall decontamination capability of a pool scrubber system. To support the analysis of the proposed system's decontamination capability, a new computer model was developed in the study to describe the bubble size dependent effect on aerosol removal including the effect of pool residence time. The accuracy of the new model was examined against experimental data for its validation. The proposed scrubber system composed of serially connected multiple shorter pools is found to have much improved decontamination performance over the current single pool system design.