• 제목/요약/키워드: mission station

검색결과 164건 처리시간 0.023초

LRIT DESIGN OF COMS

  • KOO In-Hoi;PARK Durk-Jong;SEO Seok-Bae;AHN Sang-Il;KIM Eun-Kyou
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.305-308
    • /
    • 2005
  • The COMS, Korea's first geostationary multipurpose satellite program will accommodate 3 kind of payloads; Ka-Band communication transponder, GOCI (Geostationary Ocean Color Imager), and MI (Meteorological Imager). MI raw data will be transferred to ground station via L-band link. The ground station will perform image data processing for raw data, generate them into the LRIT/HRIT format, the user dissemination data recommended by the CGMS. The LRIT/HRIT are disseminated via satellite to user stations. This paper shows the COMS LRIT data generation procedure based on COMS LRIT specification and its verification results using the LRIT user station.

  • PDF

STATION-KEEPING MANEUVER SIMULATION FOR THE KOREASAT SPACECRAFT USING MISSION ANALYSIS SOFTWARE

  • Lee, Byoung-Sun;Eun, Jong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.102-111
    • /
    • 1995
  • A series of east/west and north/south station-keeping maneuvers were simulated for the KOREAST spacecraft which has to be maintained within $\pm$0.05 at the nominal longitude of $116^{\circ}$E. Weekly an biweekly based station-deeping maneuver plannings were used, and weekend maneuvers were avoided. All of the station-keeping maneuver plannings and executions were performed using KOREASTA Mission Analysis Software on VAX/VMS operating system. Fourteen weeks station-keeping maneuvers were performed and various station-keeping orbital parameters were obtained.

  • PDF

큐브위성 STEP Cube Lab.의 지상국 시스템 설계 (Design of Ground Station System for CubeSat STEP Cube Lab.)

  • 전영현;채봉건;정현모;전성용;오현웅
    • 항공우주시스템공학회지
    • /
    • 제6권4호
    • /
    • pp.34-39
    • /
    • 2012
  • CubeSats classified as pico-class satellite require a ground station to track the satellite, transmit a command, and receive an on-orbit data such as SOH (State-of-Health) and mission data according to the operation plan. For this, ground station system has to be properly designed to perform a communication to with the satellite with enough up- and down-link budgets. In this study, a conceptual design of the ground station has been performed for the CubeSat named as STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project). The paper includes a ground station hardware interface design, link budget analysis and a ground station software realization. In addition, the operation plan of the ground station has been established considering the STEP Cube Lab. mission requirements.

OVERALL LINK ANALYSIS ON HRIT AND LRIT IN COMS

  • Park Durk-Jong;Hyun Dae-Wan;Kang Chi-Ho;Ahn Sang-Il;Kim Eun-Kyu
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.98-100
    • /
    • 2005
  • This paper describes link analysis on the processed data, HRIT (High Rate Information Transmission) and LRIT (Low Rate Information Transmission), for the preliminary design of interface between COMS (Communication, Ocean and Meteorological Satellite) and ground station. At the MODAC (MeteorologicaVOcean Data Application Center), the processed data are transmitted to user station via COMS with normalization and calibration by pre-processing of MI (Meteorological Imager) data. Due to consider satellite as radio relay, overall analysis containing uplink and downlink is needed. Specific link parameters can be obtained with using the outcomes of SRR (System Requirement Review) which was held on 13-14 June 2005, in Toulouse. From the relation between overall link margin and output power of HPA (High Power Amplifier) of MODAC, it is shown that even though the minimum power related with COMS receiving power range is transmitted at MODAC, the obtained link margin of HRIT could be above 3 dB at user station which antenna elevation angle is 10 degree.

  • PDF

An Earth-Moon Transfer Trajectory Design and Analysis Considering Spacecraft's Visibility from Daejeon Ground Station at TLI and LOI Maneuvers

  • Woo, Jin;Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권3호
    • /
    • pp.195-204
    • /
    • 2010
  • The optimal Earth-Moon transfer trajectory considering spacecraft's visibility from the Daejeon ground station visibility at both the trans lunar injection (TLI) and lunar orbit insertion (LOI) maneuvers is designed. Both the TLI and LOI maneuvers are assumed to be impulsive thrust. As the successful execution of the TLI and LOI maneuvers are crucial factors among the various lunar mission parameters, it is necessary to design an optimal lunar transfer trajectory which guarantees the visibility from a specified ground station while executing these maneuvers. The optimal Earth-Moon transfer trajectory is simulated by modifying the Korean Lunar Mission Design Software using Impulsive high Thrust Engine (KLMDS-ITE) which is developed in previous studies. Four different mission scenarios are established and simulated to analyze the effects of the spacecraft's visibility considerations at the TLI and LOI maneuvers. As a result, it is found that the optimal Earth-Moon transfer trajectory, guaranteeing the spacecraft's visibility from Daejeon ground station at both the TLI and LOI maneuvers, can be designed with slight changes in total amount of delta-Vs. About 1% difference is observed with the optimal trajectory when none of the visibility condition is guaranteed, and about 0.04% with the visibility condition is only guaranteed at the time of TLI maneuver. The spacecraft's mass which can delivered to the Moon, when both visibility conditions are secured is shown to be about 534 kg with assumptions of KSLV-2's on-orbit mass about 2.6 tons. To minimize total mission delta-Vs, it is strongly recommended that visibility conditions at both the TLI and LOI maneuvers should be simultaneously implemented to the trajectory optimization algorithm.

INITIAL ACQUISITION PROCEDURE FOR KOMPSAT2 WITH K13ANTENNA

  • Lee Jeong-bae;Yang Hyung-mo;Ahn Sang-il;Kim Eun-kyou
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.501-504
    • /
    • 2005
  • In general, most incomplete communication link setup between satellite and ground station right after separation from launcher come from less accurate orbital vector ground station uses to track the satellite because only predicted orbital state vector is available during first few orbits. This paper describes the developed procedure for successful initial acquisition for KOMPSAT-2 using scanning functions ofK13 antenna system with predicted orbital information. Azimuth scan, raster scan, spiral scan functions were tested with KOMPSA Tl under intentionally degraded orbital information for antenna operation. Through tests, spiral scan function was decided to be best search scan among 3 scans. Developed procedure can assure the successful acquisition only if azimuth offset and time offset value are within +/-2deg and +/-30sec, respectively.

  • PDF

개인적 위험도를 고려한 수소충전소의 안전계장기능 향상에 관한 연구 (A Study on the Improvement of Safety Instrumented Function of Hydrogen Refueling Station Considering Individual Risk)

  • 변윤섭
    • 한국수소및신에너지학회논문집
    • /
    • 제34권3호
    • /
    • pp.297-306
    • /
    • 2023
  • The frequency of fatal accidents that can occur at hydrogen refueling station was compared with the risk criterion for the general public suggested by the health and safety executive. If hydrogen refueling station meets the accident prevention facility standards presented in KGS Code FP216/217, it was confirmed that the risk of hydrogen refueling station was not at an unacceptable (intolerable) risk level. However, the risk of hydrogen refueling station due to small leak was analyzed as low as reasonably practicable. Therefore, methods for improving the safety instrumented function of hydrogen refueling station were reviewed. It was confirmed that the risk of hydrogen refueling station can be affected by the number of installed safety instrumentation system components, redundant architecture, mission time, proof test interval, etc. And methods for maintaining the risk of hydrogen refueling station at an acceptable risk level have been proposed.

큐브위성 STEP Cube Lab.의 지상국 시스템 개발 (Design of Ground Station System for CubeSat STEP Cube Lab.)

  • 전영현;채봉건;정현모;전성용;오현웅
    • 항공우주시스템공학회지
    • /
    • 제9권4호
    • /
    • pp.37-42
    • /
    • 2015
  • The CubeSats is classified as a pico-class satellite which requires a ground station to track the satellite, transmit commands, and receive an on-orbit data such as SOH (State-of-Health) and mission data according to the operation plan. In order to this, the ground station system has to be properly designed to perform a communication to with the satellite with enough up- and down-link budgets. In this study, a conceptual design of the ground station has been performed for the CubeSat named as STEP Cube Lab. (Cube Laboratory for Space Technology Experimental Project). The paper includes a ground station hardware interface design, a link budget analysis and a ground station software realization. In addition, the operation plan of the ground station has been established considering the STEP Cube Lab. mission requirements.

Analysis on Delta-Vs to Maintain Extremely Low Altitude on the Moon and Its Application to CubeSat Mission

  • Song, Young-Joo;Lee, Donghun;Kim, Young-Rok;Jin, Ho;Choi, Young-Jun
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권3호
    • /
    • pp.213-223
    • /
    • 2019
  • This paper analyzes delta-Vs to maintain an extremely low altitude on the Moon and investigates the possibilities of performing a CubeSat mission. To formulate the station-keeping (SK) problem at an extremely low altitude, current work has utilized real-flight performance proven software, the Systems Tool Kit Astrogator by Analytical Graphics Inc. With a high-fidelity force model, properties of SK maneuver delta-Vs to maintain an extremely low altitude are successfully derived with respect to different sets of reference orbits; of different altitudes as well as deadband limits. The effect of the degree and order selection of lunar gravitational harmonics on the overall SK maneuver strategy is also analyzed. Based on the derived SK maneuver delta-V costs, the possibilities of performing a CubeSat mission are analyzed with the expected mission lifetime by applying the current flight-proven miniaturized propulsion system performances. Moreover, the lunar surface coverage as well as the orbital characteristics of a candidate reference orbit are discussed. As a result, it is concluded that an approximately 15-kg class CubeSat could maintain an orbit (30-50 km reference altitude having ${\pm}10km$ deadband limits) around the Moon for 1-6 months and provide almost full coverage of the lunar surface.