• Title/Summary/Keyword: missing rainfall data

Search Result 33, Processing Time 0.031 seconds

Use of the Extended Kalman Filter for the Real-Time Quality Improvement of Runoff Data: 1. Algorithm Construction and Application to One Station (확장 칼만 필터를 이용한 유량자료의 실시간 품질향상: 1. 알고리즘 구축 및 단일지점에의 적용)

  • Yoo, Chul-Sang;Hwang, Jung-Ho;Kim, Jung-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.7
    • /
    • pp.697-711
    • /
    • 2012
  • This study applied the extended Kalman Filter, a data assimilation method, for the real-time quality improvement of runoff measurements. The state-space model of the extended Kalman Filter was composed of a rainfall-runoff model and the runoff measurement. This study divided the purpose of quality improvement of runoff measurements into two; one is to suppress the abnormally high variation of dam inflow data, and the other to amend the missing or erroneous measurements. For each case, a proper model of extended Kalman Filter was proposed, and the main difference between two models is whether only the variation is considered or both the bias and variation are considered in the estimation of covariance function. This study was applied to the Chungju Dam Basin to confirm the proposed models were effectively worked to improve the quality of both the dam inflow data and the runoff measurements with some missing and erroneous part.

River Flow Forecasting Model for the Youngsan Estuary Reservoir Operations(I) -Estimation Runof Hydrographs at Naju Station (영산호 운영을 위한 홍수예보모형의 개발(I) -나주지점의 홍수유출 추정-)

  • 박창언;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.4
    • /
    • pp.95-102
    • /
    • 1994
  • The series of the papers consist of three parts to describe the development, calibration, and applications of the flood forecasting models for the Youngsan Estuarine Dam located at the mouth of the Youngsan river. And this paper discusses the hydrologic model for inflow simulation at Naju station, which constitutes 64 percent of the drainage basin of 3521 .6km$^2$ in area. A simplified TANK model was formulated to simulate hourly runoff from rainfall And the model parameters were optirnized using historical storm data, and validated with the records. The results of this paper were summarized as follows. 1. The simplified TANK model was formulated to conceptualize the hourly rainfall-run-off relationships at a watershed with four tanks in series having five runoff outlets. The runoff from each outlet was assumed to be proportional to the storage exceeding a threshold value. And each tank was linked with a drainage hole from the upper one. 2. Fifteen storm events from four year records from 1984 to 1987 were selected for this study. They varied from 81 to 289rn'm The watershed averaged, hourly rainfall data were determined from those at fifteen raingaging stations using a Thiessen method. Some missing and unrealistic records at a few stations were estimated or replaced with the values determined using a reciprocal distance square method from abjacent ones. 3. An univariate scheme was adopted to calibrate the model parameters using historical records. Some of the calibrated parameters were statistically related to antecedent precipitation. And the model simulated the streamflow close to the observed, with the mean coefficient of determination of 0.94 for all storm events. 4. The simulated streamflow were in good agreement with the historical records for ungaged condition simulation runs. The mean coefficient of determination for the runs was 0.93, nearly the same as calibration runs. This may indicates that the model performs very well in flood forecasting situations for the watershed.

  • PDF

A Study on Characteristics of Climate Variability and Changes in Weather Indexes in Busan Since 1904 (1904년 이래의 부산 기후 변동성 및 생활기상지수들의 기후변화 특성 연구)

  • Ha-Eun Jeon;Kyung-Ja Ha;Hye-Ryeom Kim
    • Atmosphere
    • /
    • v.33 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • Holding the longest observation data from April 1904, Busan is one of the essential points to understand the climate variability of the Korean Peninsula without missing data since implementing the modern weather observation of the South Korea. Busan is featured by coastal areas and affected by various climate factors and fluctuations. This study aims to investigate climate variability and changes in climatic variables, extremes, and several weather indexes. The statistically significant change points in daily mean rainfall intensity and temperature were found in 1964 and 1965. Based on the change point detection, 117 years were divided into two periods for daily mean rainfall intensity and temperature, respectively. In the long-term temperature analysis of Busan, the increasing trend of the daily maximum temperature during the period of 1965~2021 was larger than the daily mean temperature and the daily minimum temperature. Applying Ensemble Empirical Mode Decomposition, daily maximum temperature is largely affected by the decadal variability compared to the daily mean and minimum temperature. In addition, the trend of daily precipitation intensity from 1964~2021 shows a value of about 0.50 mm day-1, suggesting that the rainfall intensity has increased compared to the preceding period. The results in extremes analysis demonstrate that return values of both extreme temperatures and precipitation show higher values in the latter than in the former period, indicating that the intensity of the current extreme phenomenon increases. For Wet-Bulb Globe Temperature (effective humidity), increasing (decreasing) trend is significant in Busan with the second (third)-largest change among four stations.

Completion of the Missing Rainfall Data by a Multi-regression method (다중회귀분석을 이용한 강우량 결측치 보정)

  • Lee, Myoung-Woo;Lee, Bong-Hee;Kim, Hung-Soo;Shim, Myung-Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.775-779
    • /
    • 2006
  • 강우자료의 구축은 수문해석에 있어 가장 기본적이며 중요한 단계라 할 수 있다. 하지만 수문 관측 자료의 경우 결측치가 존재하여 그에 대한 보정이 필요한 경우가 종종 발생하게 된다. 따라서 수문자료의 분석을 수행하기에 앞서 우선 자료에 대한 검정을 실시하고, 결측치가 존재할 경우는 이를 보정하여 분석을 수행하여야 한다. 본 연구에서는 다변량통계기법의 하나인 다중회귀분석을 이용하여 강우 결측치를 보정하였다. 본 연구에서는 다중공선성과 자기상관에 대하여 고려한 다중회귀모형을 구성하였다. 모형의 구성시 모든 결측지점에 적용이 가능하지 않아 일반성이 떨어짐을 확인 할 수 있었지만, 모형이 구성될 경우 통계적 적합도와 유의수준을 확인 할 수 있는 장점이 있었으며, 다중회귀모형이 구성되는 경우 좋은 보정 결과를 주는 것을 확인 할 수 있었다.

  • PDF

Improvement of Vegetation Index Image Simulations by Applying Accumulated Temperature

  • Park, Jin Sue;Park, Wan Yong;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.97-107
    • /
    • 2020
  • To analyze temporal and spatial changes in vegetation, it is necessary to determine the associated continuous distribution and conduct growth observations using time series data. For this purpose, the normalized difference vegetation index, which is calculated from optical images, is employed. However, acquiring images under cloud cover and rainfall conditions is challenging; therefore, time series data may often be unavailable. To address this issue, La et al. (2015) developed a multilinear simulation method to generate missing images on the target date using the obtained images. This method was applied to a small simulation area, and it employed a simple analysis of variables with lower constraints on the simulation conditions (where the environmental characteristics at the moment of image capture are considered as the variables). In contrast, the present study employs variables that reflect the growth characteristics of vegetation in a greater simulation area, and the results are compared with those of the existing simulation method. By applying the accumulated temperature, the average coefficient of determination (R2) and RMSE (Root Mean-Squared Error) increased and decreased by 0.0850 and 0.0249, respectively. Moreover, when data were unavailable for the same season, R2 and RMSE increased and decreased by 0.2421 and 0.1289, respectively.

Improvement of the storage coefficient estimating mehod for the clark model (Clark 단위도의 저류상수산정방법의 개선)

  • 윤태훈;박진원
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05b
    • /
    • pp.1334-1339
    • /
    • 2002
  • The objective of this study is to help practicing engineers easily use the Clark model which is used for estimating the magnitude of design flood for small stream. A representative unit hydrograph was derived on the basis of the past rainfall-runoff data and unit hydrographs, and the storage coefficient of Clark model was estimated by using hydrograph recession analysis. Since the storage coefficient(K) is a dominating factor among the parameters of Clark method, a mulitple regression formula, which has the drainage area, main channel length and slope as parameters, is propsed to estimate K value of a basin where measured data are missing. The result of regression analysis showed that there is a correlation between a storage coefficient(K) and aforemetioned three parameters in homogenious basins. A regression formular for K was derived using these correlations in a basin of Han River, Nakdong River, Young River, Kum River and Sumjin River

  • PDF

Analysis of the Optimal Window Size of Hampel Filter for Calibration of Real-time Water Level in Agricultural Reservoirs (농업용저수지의 실시간 수위 보정을 위한 Hampel Filter의 최적 Window Size 분석)

  • Joo, Dong-Hyuk;Na, Ra;Kim, Ha-Young;Choi, Gyu-Hoon;Kwon, Jae-Hwan;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.9-24
    • /
    • 2022
  • Currently, a vast amount of hydrologic data is accumulated in real-time through automatic water level measuring instruments in agricultural reservoirs. At the same time, false and missing data points are also increasing. The applicability and reliability of quality control of hydrological data must be secured for efficient agricultural water management through calculation of water supply and disaster management. Considering the characteristics of irregularities in hydrological data caused by irrigation water usage and rainfall pattern, the Korea Rural Community Corporation is currently applying the Hampel filter as a water level data quality management method. This method uses window size as a key parameter, and if window size is large, distortion of data may occur and if window size is small, many outliers are not removed which reduces the reliability of the corrected data. Thus, selection of the optimal window size for individual reservoir is required. To ensure reliability, we compared and analyzed the RMSE (Root Mean Square Error) and NSE (Nash-Sutcliffe model efficiency coefficient) of the corrected data and the daily water level of the RIMS (Rural Infrastructure Management System) data, and the automatic outlier detection standards used by the Ministry of Environment. To select the optimal window size, we used the classification performance evaluation index of the error matrix and the rainfall data of the irrigation period, showing the optimal values at 3 h. The efficient reservoir automatic calibration technique can reduce manpower and time required for manual calibration, and is expected to improve the reliability of water level data and the value of water resources.

Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea

  • Lim, Heesung;An, Hyunuk;Choi, Eunhyuk;Kim, Yeonsu
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1029-1037
    • /
    • 2020
  • The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.

Risk Index of Debris Flow Damage for Hydro- and Geographic Characteristics of Debris Flow with Bayesian Method

  • Lee, JunSeon;Yang, WooJun;You, KwangHo;Kim, MunMo;Lee, Seung Oh
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.241-242
    • /
    • 2016
  • Recent abnormal climate change induces localized heavy rainfall and extreme disasters such as debris flow near urban area. Thus many researches have been conducted to estimate and prevent, especially in focus of physical behavior of debris flow. Even though it is hardly to consider overall related parameters to estimate the extent and degree of directly or indirectly damages due to debris flow. Those analytic restraint would be caused by the diversity and complexity of regional topographic and hydrodynamic characteristics of debris flow inside. We have utilized the Bayesian method to compensate the uncertainty due to the complex characteristics of it after analyzing the numerical results from FLO-2D and field measurement data. Revised values by field measurements will enhance the numerical results and the missing parameters during numerical simulation will be supplemented with this methodology. As a final outcome in this study, the risk index of debris flow damage will be suggested to provide quantitative estimation in terms of hazard protection including the impact on buildings, especially in inner and outer of urban area.

  • PDF

Applicability of Missing Rainfall Data Estimation using Artificial Neural Networks (신경망 모형을 이용한 결측 강우 자료 추정방법의 적용성 연구)

  • Cho, Herin;Park, Hee-Seong;Kim, Hyoungseop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.512-512
    • /
    • 2015
  • 시 공간적 관측에서 다양한 원인에 의해 강우 자료에 결측이나 오측이 발생할 수 있다. 강우를 측정하고 자료를 수집 관리하는 측면에서 결측 되거나 오측된 자료를 추정 보완할 필요가 있다. 현재까지 결측 강우 자료를 추정하기 위한 방법으로 결측 지점 인근의 관측소를 이용한 단순 가중 평균치 방법에서부터 복잡한 통계적 기반의 보간 방법에 이르기까지 많은 연구들이 진행되고있다. 본 연구에서는 결측 된 강우 자료를 추정하기 위해 인공 신경망을 이용하여 모형을 구축하고 주변 관측소의 강우자료를 이용해 신경망 학습을 실시하여 적용해 보았으며, 최근 관측의 단위가 짧아지고 있는 점을 고려하여 10분, 30분, 1시간 등 다양한 시간간격의 강우자료를 구축하고 선형회귀모형과 RDS 방법, 신경망 모형을 이용한 방법 등을 적용한 결과를 비교하여 신경망 모형의 적용성을 살펴보았다. 단순한 구조면에서는 기존의 RDS 방법에 대한 적용성이 높은 것으로 판단되었으나, 성능의 개선을 위한 별다른 방법이 없는 반면 신경망 모형은 입력 자료를 다양하게 변환하여 구성하는 경우 성능을 개선하여 적용성이 더 높아 질 수 있는 것으로 판단되었다. 향후 신경망 모형을 이용해 잘못 측정된 강우를 적절히 선별하고 결측된 보완함으로써 관측된 강우 자료의 활용성을 높일 수 있을 것이다.

  • PDF