This paper proposed a new method for estimating missing values in time series rainfall data. The proposed method integrated the two most widely used estimation methods, general linear model(GLM) and ordinary kriging(OK), by taking a weighted average of covariance matrices derived from each of the two methods. The proposed method was cross-validated using daily rainfall data at thirteen rain gauges in the Hyeong-san River basin. The goodness-of-fit of the proposed method was higher than those of GLM and OK, which can be attributed to the weighting algorithm that was designed to minimize errors caused by violations of assumptions of the two existing methods. This result suggests that the proposed method is more accurate in missing values in time series rainfall data, especially in a region where the assumptions of existing methods are not met, i.e., rainfall varies by season and topography is heterogeneous.
강우자료는 수문시스템 해석에 있어 가장 기본이 되는 입력자료이며, 강우측정시에는 다양한 원인에 의해 결측이 발생하게 된다 따라서, 이러한 자료를 보정하기 위한 다양한 방법들이 제시되어 있으나 적용성이나 오차정도에 대한 평가 없이 사용되고 있는 실정이다. 본 연구에서는 기존에 사용중인 산술평균법, 정상연강우량법, 수정정상연강우량법, 역거릭법, 선형계획법, 크리깅방법 등의 강우량 보정방법을 비교 평가하였다.
분포형 모형이 개발되어 지면서 이러한 유역의 공간적인 특성을 고려한 정확한 강우 자료와 조밀한 계측망의 요구는 더욱 커지고 있다. 그러나 현실적으로 조밀한 계측망에 의해 측정된 정확한 강우 자료를 얻기는 쉽지 않다. 일반적으로 강우관측소가 적정 밀도를 가지고 유역을 대표 하도록 설치되어 있으나 부족한 실정이고, 설치되어 있더라도 강우의 시 공간적 변동성을 반영하기가 쉽지 않다. 또한 여러 가지 이유로 결측이 되는 경우도 있다. 강우는 측정된 점 관측 자료를 이용해 유역의 평균 강우분포를 추정하게 된다. 따라서 결측 강우자료는 시간의 연속성 측면에서 그 보정이 반드시 필요하며 보정 후 강우자료의 공간적 분포를 산정할 수 있을 것이다. 본 연구에서는 결측 강우량의 보정을 위하여 퍼지-유전자 알고리즘을 이용하였는데 이 방법을 기존의 방법 즉, 산술평균법, 역거리법, 년정상강우량법, 거리-고도비율법과 비교하였다. 보정결과 기존의 방법은 실측의 70~80%의 정확도를 보였으나 퍼지-유전자 알고리즘은 90%정도의 정확도를 보였다. 특히, 민감도 분석 결과를 바탕으로 수평거리와 고도차에 대한 적정 차수를 제안하였다.
교통량자료는 매우 다양한 분야에서 사용되는 기초자료이다. 교통량자료는 도로교통량조사를 통하여 수집되며, 도로교통량조사 중 기계식 장비를 사용하여 365일 24시간 지속적으로 수집되는 자료를 상시교통량자료라고 한다. 상시교통량자료는 장비의 오작동 및 여러 원인으로 교통량자료누락이 발생하는 경우가 있다. 누락된 교통량자료는 여러 누락보정방법을 적용하여 보정을 수행하고 있다. 하지만, 기존의 누락보정방법론들은 기상에 대한 영향을 전혀 고려하지 않은 실정이다. 따라서 본 연구에서는 기상 중 강우의 영향을 고려한 누락교통량자료 보정방법에 대한 연구를 수행하였다. 이를 위해 우선 일반국도에서 수집한 교통량자료와 기상청의 기상자료의 매칭을 수행하였으며, 이후 일반국도의 특성별로 군집분석 수행 및 분석대상지점 선정을 진행하였다. 세 가지 보정 기법들(평균대체법/자기회귀모형/EM 기법)을 사용하여 전체 자료에서 누락보정을 수행하는 것과 강우일의 자료만을 가지고 누락보정을 수행하여 보정값의 정확도를 평가하였다. 분석 결과 모든 보정방법 및 분석지점에서 과거 강우일의 교통량자료만을 가지고 보정한 경우가 더 정확한 보정값을 산출하는 것으로 분석되었다.
본 논문에서는 지상강우의 결측치를 추정하는 방법들 중 역거리 가중치법(IDWM), 역지수 가중치법(IEWM), 상관계수가중치법(CCWM), 인공신경망(ANN)기법, 레이더 자료를 이용한 결측치 추정 방법을 비교하여 각각의 적용성을 검토하였다. 임진강 유역을 대상지역으로 하여 각 방법을 적용한 결과, 강우의 결측치 추정에 있어서 기존의 방법 중 상관계수 가중치법(CCWM)과 인공신경망(ANN)기법에 의한 RMSE가 0.46~1.79의 범위를 보였고, 레이더자료를 이용하여 강우의 결측치를 추정한 경우 RMSE가 0.05~2.26의 범위를 보였다. 레이더 강우자료가 지점 강우자료와 달리 강우의 공간상관성을 반영하고 있음을 볼 때, 지점강우 자료를 이용한 결측치 추정 기법보다 레이더자료를 이용한 결측치의 추정기법이 그 적용성에서 우수하다고 판단되어진다.
강우자료는 수문 해석에 있어 가장 기본이 되는 입력 자료이며, 다양한 원인에 의해 결측이 발생된다. 본 연구에서는 복잡한 자연현상 문제 해결에 그 응용성이 입증된 신경망 기법을 이용하여 결측 처리된 강우를 추정하기 위해서 소양강댐 유역 12개 강우량 관측소를 대상으로 신경망 모형을 구축하였으며, 모형의 성능 평가를 위해 실무에서 가장 많이 사용되고 있는 우량 보정 방법인 역거리법(RDS)과 산술평균법(AMM)으로 추정한 값과 비교하여 신경망을 이용한 추정 방법의 우수성을 보였다. 그리고 온라인상에서 보다 신뢰성 있는 수문자료를 재난관련 유관기관으로 전송하기 위해서 신경망 모형을 이용한 상시 실시간 보정이 가능하도록 신경망 학습기로 구성된 자동 보정시스템을 제안하였다.
The amount and the continuity of the precipitation data used in a hydrological analysis may exert a big influence on the reliability of the analysis. It is a fundamental process to estimate the missing data caused by such as a breakdown of the rainfall recording machine or to expand a short period of rainfall data. In this study the eight methods widely used as methods for estimating are compared. The data used in this research is the annual precipitation amount during 17 years at the Cheolwon station including an ungauged period of 15 years and its five surrounding stations. By use of this certified method the ungauged precipitation values at the Cheolweon station is estimated and the areal average of annual precipitation for 32 years at the Han River basin is calculated.
The purpose of this research is to understand the change of runoff characteristics by estimated spatial rainfall. Therefore, this paper largely composed of two parts. First, we compared the simulated result according to estimation method, ID(Inverse Distance Method, ID2(Inverse Square Distance Method), and Kr(General Covariance Kriging Method), after letting miss rainfall data to the observed data. Second, we reviewed the runoff characteristics of the distributed runoff model according to the estimated spatial rainfall. On the basis of Yuseong water level station, we select the target basin as Gabchun watershed. We assumed 1 point or 2 point of the 6 rainfall gauge stations in watershed were missed. We applied the spatial rainfall distributed by Kr to Hy-GIS GRM, distributed runoff model. When 1 point rainfall data is missed, Kr is superior to others in point rainfall estimation and runoff estimation of Hy-GIS GRM. However, in case rainfall data of 2 points is missed, all of three methods did not give suitable result for them. In conclusion, Kr showed better applicability than other estimated methods if rainfall's data less than 2 points is missed.
강수량을 이용해 수문분석 할 경우 강수 자료의 양과 연속성은 분석의 신뢰성에 큰 영향을 미칠 수 있다. 따라서 강수 자료가 짧거나 기계 고장 등으로 인하여 결측된 경우에 강수 자료기간을 늘리거나 결측 자료를 보완하는 것은 매우 기본적인 과정이다. 이에 본 연구에서는 결측 강수량을 보완하기 위해서 적용되는 자료구동(Data-driven) 방법인 선형계획법을 많이 사용되는 7개 기법을 비교 분석하고 우수성을 검정한다. 이를 위해서 적용한 자료는 한강 유역 내에 있는 기상청 관할 관측소 중에 미계측 기간 15년을 포함하는 철원 관측소와 5개 주변 관측소의 17년간 강수량 자료이다. 그리고 검정된 방법을 적용하여 철원 관측소의 미계측 강수량을 보완하고 한강 유역의 32년간 유역 평균 강수량을 산출한다.
In this study, rainfall adjust and forecasting using artificial neural network(ANN) which includes a correlation coefficient is application in Seoul region. It analyzed one-hour rainfall data which has been reported in 25 region in seoul during from 2000 to 2006 at rainfall observatory by AWS. The ANN learning algorithm apply for input data that each region using cross-correlation will use the highest correlation coefficient region. In addition, rainfall adjust analyzed the minimum error based on correlation coefficient and determination coefficient related to the input region. ANN model used back-propagation algorithm for learning algorithm. In case of the back-propagation algorithm, many attempts and efforts are required to find the optimum neural network structure as applied model. This is calculated similar to the observed rainfall that the correlation coefficient was 0.98 in missing rainfall adjust at 10 region. As a result, ANN model has been for suitable for rainfall adjust. It is considered that the result will be more accurate when it includes climate data affecting rainfall.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.