• Title/Summary/Keyword: missing data inference

Search Result 22, Processing Time 0.03 seconds

Reject Inference of Incomplete Data Using a Normal Mixture Model

  • Song, Ju-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.425-433
    • /
    • 2011
  • Reject inference in credit scoring is a statistical approach to adjust for nonrandom sample bias due to rejected applicants. Function estimation approaches are based on the assumption that rejected applicants are not necessary to be included in the estimation, when the missing data mechanism is missing at random. On the other hand, the density estimation approach by using mixture models indicates that reject inference should include rejected applicants in the model. When mixture models are chosen for reject inference, it is often assumed that data follow a normal distribution. If data include missing values, an application of the normal mixture model to fully observed cases may cause another sample bias due to missing values. We extend reject inference by a multivariate normal mixture model to handle incomplete characteristic variables. A simulation study shows that inclusion of incomplete characteristic variables outperforms the function estimation approaches.

A Probabilistic Tensor Factorization approach for Missing Data Inference in Mobile Crowd-Sensing

  • Akter, Shathee;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.63-72
    • /
    • 2021
  • Mobile crowd-sensing (MCS) is a promising sensing paradigm that leverages mobile users with smart devices to perform large-scale sensing tasks in order to provide services to specific applications in various domains. However, MCS sensing tasks may not always be successfully completed or timely completed for various reasons, such as accidentally leaving the tasks incomplete by the users, asynchronous transmission, or connection errors. This results in missing sensing data at specific locations and times, which can degrade the performance of the applications and lead to serious casualties. Therefore, in this paper, we propose a missing data inference approach, called missing data approximation with probabilistic tensor factorization (MDI-PTF), to approximate the missing values as closely as possible to the actual values while taking asynchronous data transmission time and different sensing locations of the mobile users into account. The proposed method first normalizes the data to limit the range of the possible values. Next, a probabilistic model of tensor factorization is formulated, and finally, the data are approximated using the gradient descent method. The performance of the proposed algorithm is verified by conducting simulations under various situations using different datasets.

An Approach to Survey Data with Nonresponse: Evaluation of KEPEC Data with BMI (무응답이 있는 설문조사연구의 접근법 : 한국노인약물역학코호트 자료의 평가)

  • Baek, Ji-Eun;Kang, Wee-Chang;Lee, Young-Jo;Park, Byung-Joo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.35 no.2
    • /
    • pp.136-140
    • /
    • 2002
  • Objectives : A common problem with analyzing survey data involves incomplete data with either a nonresponse or missing data. The mail questionnaire survey conducted for collecting lifestyle variables on the members of the Korean Elderly Phamacoepidemiologic Cohort(KEPEC) in 1996 contains some nonresponse or missing data. The proper statistical method was applied to evaluate the missing pattern of a specific KEPEC data, which had no missing data in the independent variable and missing data in the response variable, BMI. Methods : The number of study subjects was 8,689 elderly people. Initially, the BMI and significant variables that influenced the BMI were categorized. After fitting the log-linear model, the probabilities of the people on each category were estimated. The EM algorithm was implemented using a log-linear model to determine the missing mechanism causing the nonresponse. Results : Age, smoking status, and a preference of spicy hot food were chosen as variables that influenced the BMI. As a result of fitting the nonignorable and ignorable nonresponse log-linear model considering these variables, the difference in the deviance in these two models was 0.0034(df=1). Conclusion : There is a lot of risk if an inference regarding the variables and large samples is made without considering the pattern of missing data. On the basis of these results, the missing data occurring in the BMI is the ignorable nonresponse. Therefore, when analyzing the BMI in KEPEC data, the inference can be made about the data without considering the missing data.

On the Bayesian Statistical Inference (베이지안 통계 추론)

  • Lee, Ho-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.263-266
    • /
    • 2007
  • This paper discusses the Bayesian statistical inference. This paper discusses the Bayesian inference, MCMC (Markov Chain Monte Carlo) integration, MCMC method, Metropolis-Hastings algorithm, Gibbs sampling, Maximum likelihood estimation, Expectation Maximization algorithm, missing data processing, and BMA (Bayesian Model Averaging). The Bayesian statistical inference is used to process a large amount of data in the areas of biology, medicine, bioengineering, science and engineering, and general data analysis and processing, and provides the important method to draw the optimal inference result. Lastly, this paper discusses the method of principal component analysis. The PCA method is also used for data analysis and inference.

  • PDF

Undecided inference using bivariate probit models (이변량 프로빗모형을 이용한 미결정자 추론)

  • Hong, Chong-Sun;Jung, Mi-Yang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1017-1028
    • /
    • 2011
  • When it is not easy to decide the credit scoring for some loan applicants, credit evaluation is postponded and reserve to ask a specialist for further evaluation of undecided applicants. This undecided inference is one of problems that happen to most statistical models including the biostatistics and sportal statistics as well as credit evaluation area. In this work, the undecided inference is regarded as a missing data mechanism under the assumption of MNAR, and use the bivariate probit model which is one of sample selection models. Two undecided inference methods are proposed: one is to make use of characteristic variables to represent the state for decided applicants, and the other is that more accurate and additional informations are collected and apply these new variables. With an illustrated example, misclassification error rates for undecided and overall applicants are obtainded and compared according to various characteristic variables, undecided intervals, and thresholds. It is found that misclassification error rates could be reduced when the undecided interval is increased and more accurate information is put to model, since more accurate situation of decided applications are reflected in the bivariate probit model.

ELCIC: An R package for model selection using the empirical-likelihood based information criterion

  • Chixiang Chen;Biyi Shen;Ming Wang
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.355-368
    • /
    • 2023
  • This article introduces the R package ELCIC (https://cran.r-project.org/web/packages/ELCIC/index.html), which provides an empirical likelihood-based information criterion (ELCIC) for model selection that includes, but is not limited to, variable selection. The empirical likelihood is a semi-parametric approach to draw statistical inference that does not require distribution assumptions for data generation. Therefore, ELCIC is more robust and versatile in the context of model selection compared to the currently existing information criteria. This paper illustrates several applications of ELCIC, including its use in generalized linear models, generalized estimating equations (GEE) for longitudinal data, and weighted GEE (WGEE) for missing longitudinal data under the mechanisms of missing at random and dropout.

Bayesian Analysis for Categorical Data with Missing Traits Under a Multivariate Threshold Animal Model (다형질 Threshold 개체모형에서 Missing 기록을 포함한 이산형 자료에 대한 Bayesian 분석)

  • Lee, Deuk-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.151-164
    • /
    • 2002
  • Genetic variance and covariance components of the linear traits and the ordered categorical traits, that are usually observed as dichotomous or polychotomous outcomes, were simultaneously estimated in a multivariate threshold animal model with concepts of arbitrary underlying liability scales with Bayesian inference via Gibbs sampling algorithms. A multivariate threshold animal model in this study can be allowed in any combination of missing traits with assuming correlation among the traits considered. Gibbs sampling algorithms as a hierarchical Bayesian inference were used to get reliable point estimates to which marginal posterior means of parameters were assumed. Main point of this study is that the underlying values for the observations on the categorical traits sampled at previous round of iteration and the observations on the continuous traits can be considered to sample the underlying values for categorical data and continuous data with missing at current cycle (see appendix). This study also showed that the underlying variables for missing categorical data should be generated with taking into account for the correlated traits to satisfy the fully conditional posterior distributions of parameters although some of papers (Wang et al., 1997; VanTassell et al., 1998) presented that only the residual effects of missing traits were generated in same situation. In present study, Gibbs samplers for making the fully Bayesian inferences for unknown parameters of interests are played rolls with methodologies to enable the any combinations of the linear and categorical traits with missing observations. Moreover, two kinds of constraints to guarantee identifiability for the arbitrary underlying variables are shown with keeping the fully conditional posterior distributions of those parameters. Numerical example for a threshold animal model included the maternal and permanent environmental effects on a multiple ordered categorical trait as calving ease, a binary trait as non-return rate, and the other normally distributed trait, birth weight, is provided with simulation study.

Trace-based Interpolation Using Machine Learning for Irregularly Missing Seismic Data (불규칙한 빠짐을 포함한 탄성파 탐사 자료의 머신러닝을 이용한 트레이스 기반 내삽)

  • Zeu Yeeh;Jiho Park;Soon Jee Seol;Daeung Yoon;Joongmoo Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.62-76
    • /
    • 2023
  • Recently, machine learning (ML) techniques have been actively applied for seismic trace interpolation. However, because most research is based on training-inference strategies that treat missing trace gather data as a 2D image with a blank area, a sufficient number of fully sampled data are required for training. This study proposes trace interpolation using ML, which uses only irregularly sampled field data, both in training and inference, by modifying the training-inference strategies of trace-based interpolation techniques. In this study, we describe a method for constructing networks that vary depending on the maximum number of consecutive gaps in seismic field data and the training method. To verify the applicability of the proposed method to field data, we applied our method to time-migrated seismic data acquired from the Vincent oilfield in the Exmouth Sub-basin area of Western Australia and compared the results with those of the conventional trace interpolation method. Both methods showed high interpolation performance, as confirmed by quantitative indicators, and the interpolation performance was uniformly good at all frequencies.

Undecided inference using logistic regression for credit evaluation (신용평가에서 로지스틱 회귀를 이용한 미결정자 추론)

  • Hong, Chong-Sun;Jung, Min-Sub
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.2
    • /
    • pp.149-157
    • /
    • 2011
  • Undecided inference could be regarded as a missing data problem such as MARand MNAR. Under the assumption of MAR, undecided inference make use of logistic regression model. The probability of default for the undecided group is obtained with regression coefficient vectors for the decided group and compare with the probability of default for the decided group. And under the assumption of MNAR, undecide dinference make use of logistic regression model with additional feature random vector. Simulation results based on two kinds of real data are obtained and compared. It is found that the misclassification rates are not much different from the rate of rawdata under the assumption of MAR. However the misclassification rates under the assumption of MNAR are less than those under the assumption of MAR, and as the ratio of the undecided group is increasing, the misclassification rates is decreasing.

Proposal to Supplement the Missing Values of Air Pollution Levels in Meteorological Dataset (기상 데이터에서 대기 오염도 요소의 결측치 보완 기법 제안)

  • Jo, Dong-Chol;Hahn, Hee-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.181-187
    • /
    • 2021
  • Recently, various air pollution factors have been measured and analyzed to reduce damages caused by it. In this process, many missing values occur due to various causes. To compensate for this, basically a vast amount of training data is required. This paper proposes a statistical techniques that effectively compensates for missing values generated in the process of measuring ozone, carbon dioxide, and ultra-fine dust using a small amount of learning data. The proposed algorithm first extracts a group of meteorological data that is expected to have positive effects on the correction of missing values through statistical information analysis such as the correlation between meteorological data and air pollution level factors, p-value, etc. It is a technique that efficiently and effectively compensates for missing values by analyzing them. In order to confirm the performance of the proposed algorithm, we analyze its characteristics through various experiments and compare the performance of the well-known representative algorithms with ours.