• Title/Summary/Keyword: miss distance

Search Result 62, Processing Time 0.026 seconds

Design of a Missile Guidance Law via Backstepping and Disturbance Observer Techniques Considering Missile Control System Dynamics (백스텝핑 방법과 외란관측기법에 의한 미사일 제어시스템의 동역학을 고려한 미사일 유도법칙의 설계)

  • Song, Seong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.88-94
    • /
    • 2008
  • In this paper, a design method of a missile guidance command is presented considering the dynamics of missile control systems. The design of a new guidance command is based on the well-known PNG(propotional navigation guidance) laws. The missile control system dynamics cause the time-delays of the PN guidance command and degrade the performance of original guidance laws which are designed under the assumption of the ideal missile control systems. Using a backstepping method, these time-delay effects can be compensated. In order to implement the guidance command developed by the backstepping procedure, it is required to measure or calculate the successive time-derivatives of the original guidance command, PNG and other kinematic variables such as the relative distance. Instead of directly using the measurements of these variables and their successive derivatives, a simple disturbance observer technique is employed to estimate a guidance command described by them. Using Lyapunov method, the performance of a newly developed guidance command is analyzed against a target maneuvering with a bounded and time-varying acceleration.

LFM Radar Implemented in SDR Architecture (SDR 기반의 LFM 레이다 설계 및 구현)

  • Yoon, Jae-Hyuk;Yoo, Seung-Oh;Lee, Dong-Ju;Ye, Sung-Hyuck
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.308-315
    • /
    • 2018
  • In this paper, we present the basic design results for high-resolution radar development at S-band frequency that can precisely measure the miss distance between two targets. The basic system requirement is proposed for the design of a 3.5 GHz linear frequency-modulated (LFM) radar with maximum detection distance and distance resolution of 2 km and 1 m, respectively, and the specifications of each module are determined using the radar equation. Our calculations revealed a signal-to-noise ratio ${\geq}30dB$ with a bandwidth of 150 MHz, transmission power of 43 dBm for the power amplifier, gain of 26 dBi for the antenna, noise figure of 8 dB, and radar cross-section of $1m^2$ at a target distance of 2 km from the radar. Based on the calculation results and the theory and method of LFM radar design, the hardware was designed using software defined radar technology. The results of the subsequent field test are presented that prove that the designed radar system satisfies the requirements.

Pursuit-evasion as a dynamic game

  • Imado, Fumiaki;Ichikawa, Akira;Kanai, Kimio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.474-479
    • /
    • 1993
  • A study about two-dimensional pursuit-evasion dynamic games is presented and discussed. A pursuer tries to intercept an evader by a strategy based on proportional navigation guidance, while the evader tries to maximize a miss distance by the optimal control. The study is applied to a ball game and an air-combat game. The results show the same features exist in both games, therefore the study will be able to apply for general two dimensional dynamic games. In the ball game, the study is extended to cases where a goal exists, while in the air-combat game, some three-dimensional problems are solved and the results are also shown.

  • PDF

Spacecraft Guidance Algorithms for Asteroid Intercept and Rendezvous Missions

  • Hawkins, Matt;Guo, Yanning;Wie, Bong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.154-169
    • /
    • 2012
  • This paper presents a comprehensive review of spacecraft guidance algorithms for asteroid intercept and rendezvous missions. Classical proportional navigation (PN) guidance is reviewed first, followed by pulsed PN guidance, augmented PN guidance, predictive feedback guidance, Lambert guidance, and other guidance laws based on orbit perturbation theory. Optimal feedback guidance laws satisfying various terminal constraints are also discussed. Finally, the zero-effort-velocity (ZEV) error, analogous to the well-known zero-effort-miss (ZEM) distance, is introduced, leading to a generalized ZEM/ZEV guidance law. These various feedback guidance laws can be easily applied to real asteroid intercept and rendezvous missions. However, differing mission requirements and spacecraft capabilities will require continued research on terminal-phase guidance laws.

UAV Conflict Detection and Resolution Based on Geometric Approach

  • Park, Jung-Woo;Oh, Hyon-Dong;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • A method of conflict detection and resolution is described by using simple geometric approach. Two VAVs are dealt with and considered as point masses with constant velocity. This paper discusses en route aircraft which are assumed to be linked by real time data bases like ADS-B. With this data base, all DAVs share the information each other. Calculating PCA (Point of Closest Approach), we can evaluate the worst conflict condition between two VAVs. This paper proposes one resolution maneuvering logic, which can be called 'Vector Sharing Resolution'. In case of conflict, using miss distance vector in PCA, we can decide the directions for two VAVs to share the conflict region. With these directions, VAVs are going to maneuver cooperatively. First of all, this paper describes some '2-D' conflict scenarios and then extends to '3-D' conflict scenarios.

Target Adaptive Guidance Using Near-Zone Information from IR Seeker (근접영역에서의 IR 탐색기 정보를 이용한 표적적응유도)

  • 엄태윤;김필성
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.113-119
    • /
    • 2002
  • A target adaptive guidance(TAG) algorithm is proposed employing the near-zone signal that can be measured from an infrared seeker. The guidance order is composed of a conventional PNG command and an additional command to be calculable from an additional LOS rate between a hot point of target and a required intercept point. The characteristic of the near-zone signal is similar to that of LOS rate that is inversely proportional to the square of time-to-go. Hence the proposed scheme can be applied to real systems with no estimator for time-to-go. From analysis results on the miss distance with perfect missile and perfect seeker, it follows that the proposed TAG algorithm guarantees missile to be ideally guided to the required intercept point. And it is less affected by the TAG start time and a proportional navigation ratio than other TAG schemes using a LOS rate such as a step bias or a ramp bias.

Real-time midcourse guidance with consideration of the impact condition

  • Song, Eun-Jung;Joh, Mi-Ok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.26-36
    • /
    • 2003
  • The objective of this study is to enhance neural-network guidance to consider the impact condition. The optimal impact condition in this study is defined as an head-on attack. Missile impact-angle error, which is a measure of the degree to which the missile is not steering for a head-on attack, can also have an influence on the final miss distance. Therefore midcourse guidance is used to navigate the missile, reducing the deviation angle from head on, given some constraints on the missile g performance. A coordinate transformation is introduced to simplify the three-dimensional guidance law and, consequently, to reduce training data. Computer simulation results show that the neural-network guidance law with the coordinate transformation reduces impact-angle errors effectively.

Development of side attack guidance law for an underwater vehicle (수중 운동체를 위한 측면 공격 유도 기법)

  • 이보형;이장규;한형석;김병수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.533-539
    • /
    • 1993
  • In this paper, two side-attack guidance laws for an underwater vehicle are considered. In order to find the guidance command, we first make use of the optimal guidance law with terminal impact angle constraint. Secondly, the optimal solution of tracking problem is used. This paper shows some brief theory which is used in deriving the side-attack guidance laws, and the method of computing these guidance laws. Simulations on underwater vehicle for a constant moving target prove that the suggested side-attack guidance laws have enhanced side attack performance over the optimal guidance law with miss distance weighting only. Furthermore, from simulation results. we conclude that the guidance law using the optimal solution of tracking problem is more efficient for the side-attack guidance than the optimal guidance law with terminal impact angle constraint.

  • PDF

A linearized curvature guidance algorithm for a passive homing missile (수동 유도 미사일 제어를 위한 선형화된 곡률 유도 알고리즘)

  • 신용준;김경근;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.245-248
    • /
    • 1996
  • This paper suggests a new concept for missile guidance control, called linearized common curvature guidance law that enhances the probability to kill a target. The proposed guidance system is composed of two switching modes; one for the midcourse guidance and the other for the terminal guidance, which is switched by a specified critical value (.epsilon.). And the system and the commands are formulated and its simulations are provided in comparison with the conventional commanded line of sight guidance algorithm. Miss distance and angle of attack are denoted as performance of parameters. This new concept, common curvature guidance algorithm, revises the navigation guidance and accompanies, various considerations.

  • PDF

A Miss Distance Image Analysis Technique Based On Object Contour (윤곽선 기반의 이격거리 영상해석 기법)

  • Park, Won-U;Choi, Ju-Ho;Yoo, Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.238-248
    • /
    • 1998
  • This paper presents an image analysis method for mearurement correction using the object contour based analysis, which measure the shape features of the imitation missile object. The image analysis is divided into object's tilting angle analysis and corner points detection. The tilting angle is calculated by edge extracting the region-of-interest image and by Radon transform it. The corner points are obtained by contour tracking of binary image and its curvature data processing and analysis. The ability of this presented method is simulated and evaluated by the results of accuracy testing.

  • PDF