• Title/Summary/Keyword: misconception type

Search Result 19, Processing Time 0.028 seconds

Types of Misconceptions and their Consistencies of the Elementary School Teachers about the Characteristics of Currents according to the Connection Methods of Batteries in Simple Electric Circuits (전지의 연결방법에 따른 전류의 특성에 대한 초등교사들의 오개념 유형과 그 일관성)

  • Hyun, Dong-Geul;Shin, Ae-Kyung
    • Journal of Science Education
    • /
    • v.38 no.2
    • /
    • pp.331-343
    • /
    • 2014
  • The types of misconceptions and their consistencies of the elementary school teachers about the characteristics of currents according to the connection methods of batteries in simple electric circuits were investigated. The misconceptions of the elementary school teachers about them could be divided into three types. Among the respondents of the 96 elementary school teachers for this study, the 2 elementary school teachers consistently understood the characteristics of currents on the basis of the misconception type of focusing only the number of batteries connected regardless of the connection methods of batteries, the 8 elementary school teachers did on the basis of the misconception type of confusing the series connection and the parallel connection of batteries, and the 4 elementary school teachers did on the basis of the misconception type of confusing the series and parallel connection of batteries with those of resistors. Also, they consistently applied these misconception types to not only the situations to use the learned concepts but the situations to use the differentiated concepts about the connection methods of batteries.

  • PDF

Teachers' Understanding of Declination and Its Explanation Presented in the Earth Science II Textbook (편각에 대한 교사의 이해와 지구과학 II 교과서의 기술)

  • Lee, Gyuho
    • Journal of the Korean earth science society
    • /
    • v.35 no.7
    • /
    • pp.585-597
    • /
    • 2014
  • This study surveys how teachers can improve their understanding about the concept of declination only through reading the material presented as non-dipole magnetic model. This study also investigates a difference between the content of declination presented in "Earth Science II" textbook under the 2009 revised National Curriculum and that of the past one. Thirty teachers in Gyeonggi province and thirty three in the city of Seoul are surveyed; they are selected from the participants of required training that provides their first grade regular teaching certification. Findings of this study are as follows. First, the study finds that teacher participants possess several misconceptions about the declination. Their typical misconception show that a compass needle directly indicates the magnetic north pole. This type of misconception is not corrected only by a reading the material. Second, the study shows that the degree of teachers' understanding about the concept of declination improves through the reading the material of a non-dipole magnetic model. Third, the study reveals that the material of nod-dipole magnetic model is more effective with teachers than students. Finally, the study suggests that explanations including non-dipole magnetic model be revised in the current textbooks.

Developing a Web-Based System for Testing Students' Physics Misconceptions (WEBSYSTEM) and its Implementation

  • Kim, Min-Kee;Choi, Jae-Hyeok;Song, Jin-Woong
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.2
    • /
    • pp.105-119
    • /
    • 2007
  • Several studies have attempted to test students' misconceptions of physics and to provide teaching strategies in order to repair them. The results from these studies have revealed that the diagnosis of students' misconception is crucial, although they often failed to grasp the practice of its implementation. In terms of being a type of methodology for science education, the Internet allows large-scale surveys and investigations to be carried out in a relatively short period of time. This paper reports the results of the development, implementation, and evaluation of a WEb-based SYStem for TEsting students' Misconceptions in physics (WEBSYSTEM) aimed at three groups (science educational researchers who study students' physics conceptions using the system as a detector, school science teachers who practice it as an instructional material, and students who benefit from it for their self-directed learning). The web-based testing system is based on a review of the instructional development strategies of ADDIE (Gustafson, Branch, 2002; Rha, Chung, 2001). Results showed that WEBSYSTEM could work effectively as a multi-purposed tool for the three target groups with a further partial revision, providing educational researchers with resourceful data to study students' misconceptions in physics. Issues of administrative strategies, reexamination of questionnaires, and international collaboration via WEBSYSTEM are discussed.

High School Students' Conceptual Change of the Lunar Phases on Instyuction Using the Lunar Phases Drawing Module (달의 위상 작도 모듈 활용 수업에 의한 고등학생들의 달의 위상 개념 변화)

  • Kim, Jong-Hee
    • Journal of the Korean earth science society
    • /
    • v.27 no.4
    • /
    • pp.353-363
    • /
    • 2006
  • This study investigates how the lunar phases drawing module-applied instruction affects high school students' conceptual changes of the lunar phases. 46 juniors in a high school were given the module instruction on drawing the lunar phases, and then interviews were conducted to verify conceptual changes in subjects' recognition structures. The types of students' misconceptions of the lunar phases change before the instruction were as follows. Type S is that the Earth's shadow covers the moon. Type SR is that one has both misconception of Type S and a scientific concept at the same time according to the positional relationships. The scientific concept means that an observer sees a moon's part which reflects sunlight. Type SB is that the Earth's shadow covers the moon or the moon can be seen or not by the background's brightness according to the positional relationships. The last Type SRB includes all three above-mentioned types, and it explains the lunar phases at each position. As a result of the module-based instruction, 26 out of 36 subjects built up the scientific concept and 10 students did not. 7 out of the 11 Type S and 3 out of the 17 Type SR students did not, either. Especially, type S students did not change their preconception that the phases of moon change were done by the earth's shadow. Here, their preconception is too much strong; as they solve problems, their preconception is more beneficial, comparing to the method which it is presented from the module. This fact supports that it is difficult for students to discard preconception.

A Study on the Expression of objectified Spatial Composition in Interior Design (실내디자인에 있어서 오브제적 공간구성 표현에 관한 연구)

  • Kim, Su-Jung;Lee, Sang-Ho
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.6 s.59
    • /
    • pp.120-130
    • /
    • 2006
  • This study is about objectified spatial composition. The Interior Design field has grown and established its major trends dependent upon other related field of study. With this perspective in mind, esthetics on Interior Design has to be treated in similar manner. In modem architects or fine artists have defined the terminology 'objectification' theoretical principle where by unable to distinguish between 'object's type' and 'objects', Presently, the term 'objectified' became a trend word. In order to confront misconception of the idea of 'objectification', some people define as reflection of this complex society. There are five types in expression of objectified spatial composition in Interior Design. Which are free form spatial composition through artistry of artists, fantastic spatial composition by polysemous collision, symbolic spatial composition from the metaphorical of form, aggregate spatial composition by geometric collision and geometric superimposition, and cultural spatial composition. Therefore, this study aims to help understanding of tendency in various space expressions in Interior Design through searching how to express type of objectified spatial composition in Interior Design from 2000 through 2005.

The Types of Secondary School Students' Preconceptions on the Motion of the Earth and the Moon (계통도를 이용한 중.고등학생의 지구와 달의 운동에 관한 개념 유형 연구)

  • Woo, Jong-Ok;Lee, Hang-Ro;Min, Jun-Gyu
    • Journal of The Korean Association For Science Education
    • /
    • v.15 no.4
    • /
    • pp.379-393
    • /
    • 1995
  • In spite of school science learning, the students' conceptions have not been changed easily. Therefore, to make students overcome their non scientific conceptions has been an important issue in science education. The purpose of this study was to identify the conceptions of students and teachers on the motion of the earth and the moon. The instrument was developed for estimating students' understandings of the concepts related to the motion of the earth and the moon. The validity of the instrument was examined by the specialists in Science Educator and Astronomer. At the same time, the two field trials had been executed, and the items were modified. Also, it consists of 12 items including 9 two-tier multiple choice items and 3 multiple choice items. The population of this study consists of 250 eighth-, 299 tenth-, 292 eleventh-grade students, 134 science teachers in secondary school. SPSS/PC+ was adopted for the statistical analysis. The type of misconceptions possessed students were as follows: 1) At 12:00 noon, the sun is directly overhead. 2) First quarter moon is a half of overall surface of the moon. 3) Air don't rotate with the earth surface because it keeps apart from the earth surface. 4) Summer is warmer than winter, because the earth is nearer from the sun in summer. 5) Whenever season is changed, the direction of rotation axis of the earth is changed. 6) The moon is the brightest at the position of new moon, because the distance between the moon and the sun is the shortest and the moon is received strongest sunlight. 7) The moon is not seen at the position of real full moon, because it is covered with shadow of the earth. 8) When the moon is not seen in the earth, sunlight is not reached at the moon. The major findings were as follows : 1) The middle school students had more misconceptions than those of high school students. And female students had more misconceptions than those of male ones. 2) The rate of correct answer and the type of conception in the tenth grade students were very similar with eleventh grade students. 3) The higher cognitive level, the better development of scientific conception and the less misconception. Also, the correlation coefficient between scientific conception score and GALT score was 0.57. 4) The students in scientific part had higher the rate of correct answer than those of students in human part and the former had less misconception than the latter. 5) The rate of correct answer about model and figure items was lower than descriptive ones, because they did not understand about figures itselves. These types of misconceptions will be used for science instruction and studies of other conceptions need.

  • PDF

Analysis of Types on Osmotic Pressure and Semipermeable Membrane Concept in Chemistry and Biology Textbooks (화학과 생물 교과서에서 삼투압과 반투막 개념에 관한 설명 유형 분석)

  • Ko, Young-Hwan;Kang, Dae-Hun;Ryu, Oh-Hyun;Paik, Seoung-Hey
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.3
    • /
    • pp.444-454
    • /
    • 2002
  • In this study, we analyzed the explanation of the concepts related to osmotic pressure and semipermeable membrane that were represented in chemistry and biology textbooks of high school and general course of college. There were 4 types of explanation in osmotic pressure and 3 types of semipermeable membrane concept. Students can understand the concepts with different meaning because there are different viewpoints on the explanations of the concepts. We must consider the various types of explanation when we design science textbooks because these confusions disturb students' understanding of the concepts.

A Qualitative Study on the Elementary School Students' Responses Produced by a Discrepant Event (불일치 사례로 유발되는 초등학생들의 반응에 대한 정성적 연구)

  • Koh Hanjoong;Seok Jongim;Noh Taehee;Kang Sukjin
    • Journal of Korean Elementary Science Education
    • /
    • v.24 no.4
    • /
    • pp.426-434
    • /
    • 2005
  • In this study, elementary school students' responses toward a discrepant event about a float-or-sink problem were investigated through semi-structured interviews. Initial participants were 61 fifth-grade students from two elementary schools. After excluding the students who did not possess the target misconception from the results of a preconception test and who were not willing to participate in an interview, 31 students (14 males and 17 females) were finally interviewed by two teacher-interviewers. During the interviews, students were first provided with a hands-on experiment which was the same as the situation in the preconception test, and then they were asked about believability of the discrepant event, inconsistency between the discrepant event and their existing conceptions, and belief change after experiencing the discrepant event. Interviews were audio- and video-taped, and then were transcribed by two interviewers. After analyzing the interview transcriptions, we found four types of students' responses; rejection, uncertainty, peripheral belief change, and belief change. We also found that belief change response type should be classified into three distinctive subtypes; belief decrease, ad-hoc belief change, and analytical-abductive belief change.

  • PDF

Science High-School Students Understanding of Velocity & Acceleration and of the Motion of Bob When Tension is Removed in a Simple Pendulum

  • Kim, Young-Min;Jeong, Seong-Oh
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.5
    • /
    • pp.611-619
    • /
    • 2006
  • The aims of this study are to investigate science high school students' understanding of velocity and acceleration of a simple pendulum bob, and to investigate their understanding of inertia and gravitational force in the motion of a pendulum bob when the tension is removed. For the study, 46 students that had already studied the physical, concepts in simple pendulum were sampled from a science high school in a large city in Korea. For a comparison with general high school students' conceptions, 49 students were sampled from a general high school in the same city. The test tool for the investigation consisted of four drawing and simple-answering type questions developed by the authors. The outcomes of the study revealed that a substantial number of science high school students have misconceptions concerning acceleration in pendulum motion, and that many of them do not understand the relationship between force and acceleration. In addition, the results of the study showed that more than 30% of the students drew the path of a bob going along the tangential direction at the highest point of the motion, and approximately 20% of them drew the path of a bob falling straight down at the lowest point of the motion.

The Effects of Conflict Situation Types on Inducing Students' Cognitive Conflicts in Newton's Laws (뉴턴 운동법칙에 관한 문제에서 갈등상황의 유형이 학생들의 인지적 갈등 유발에 미치는 영향)

  • Lim, Lee-Suk;Lee, Yung-Jick;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.4
    • /
    • pp.473-483
    • /
    • 1998
  • A learner's cognitive conflict with his /her existing conception is regarded to be one of the most important factors for a conceptual change. In this study, the effects of the conflict situation types on inducing students' cognitive conflicts in Newton's law were examined. The thirty-four students of 10th grade were selected from a rural high school based on the result of pre-test. The two different types of conflict situations among many possible types were used in this study. One type was using logical conflict situation and the other was demonstrating real conflict situation. The levels of cognitive conflict were measured by 4-point Likert scale by three interviewers. As the results, the demonstration method was more effective than the logical argument method. In case of the logical argument method, rather than showing scientific conceptions, suggesting another misconception was more effective to the students who have misconception. However, logical argument method was not effective to those who have scientfic conceptions. To the students who have unscientific conceptions, the demonstration method was very effective for inducing cognitive conflict. From the results of this study, demonstration method of teaching seems to be very effective for inducing students' cognitive conflict and overcoming their misconceptions on scientific concept.

  • PDF