• 제목/요약/키워드: misclassification cost

검색결과 27건 처리시간 0.028초

유전 알고리듬 기반 집단분류기법의 개발과 성과평가 : 채권등급 평가를 중심으로 (Design and Performance Measurement of a Genetic Algorithm-based Group Classification Method : The Case of Bond Rating)

  • 민재형;정철우
    • 한국경영과학회지
    • /
    • 제32권1호
    • /
    • pp.61-75
    • /
    • 2007
  • The purpose of this paper is to develop a new group classification method based on genetic algorithm and to com-pare its prediction performance with those of existing methods in the area of bond rating. To serve this purpose, we conduct various experiments with pilot and general models. Specifically, we first conduct experiments employing two pilot models : the one searching for the cluster center of each group and the other one searching for both the cluster center and the attribute weights in order to maximize classification accuracy. The results from the pilot experiments show that the performance of the latter in terms of classification accuracy ratio is higher than that of the former which provides the rationale of searching for both the cluster center of each group and the attribute weights to improve classification accuracy. With this lesson in mind, we design two generalized models employing genetic algorithm : the one is to maximize the classification accuracy and the other one is to minimize the total misclassification cost. We compare the performance of these two models with those of existing statistical and artificial intelligent models such as MDA, ANN, and Decision Tree, and conclude that the genetic algorithm-based group classification method that we propose in this paper significantly outperforms the other methods in respect of classification accuracy ratio as well as misclassification cost.

범주형 자료에서 경험적 베이지안 오분류 분석 (Empirical Bayesian Misclassification Analysis on Categorical Data)

  • 임한승;홍종선;서문섭
    • 응용통계연구
    • /
    • 제14권1호
    • /
    • pp.39-57
    • /
    • 2001
  • 범주형 자료에서 오분류는 자료를 수집하는 과정에서 발생될 수 있다. 오분류되어 있는 자료를 정확한 자료로 간주하여 분석한다면 추정결과에 편의가 발생하고 검정력이 약화되는 결과를 초래하게 되며, 정확하게 분류된 자료를 오분류하고 판단한다면 오분류의 수정을 위해 불필요한 비용과 시간을 낭비해야 할 것이다. 따라서 정확하게 분류된 표본인지 오분류된 표본인지를 판정하는 것은 자료를 분석하기 전에 이루어져야할 매우 중요한 과정이다. 본 논문은 I$\times$J 분할표로 주어지는 범주형 자료에서 두 변수 중 하나의 변수에서만 오분류가 발생되는 경우에 오분류 여부를 검정하기 위해서 오분류 가능성이 없는 변수에 대한 주변합은 고정시키고, 오분류 여부를 가능성이 있는 변수의 주변합을 Sebastiani와 Ramoni(1997)가 제안한 Bound와 외부정보로 표현되는 Collapse의 개념, 그리고 베이지안 방법을 확장하여 자료에 적합한 모형과 사전정보를 고려한 사전모수를 다양하게 설정하면서 재분류하는 연구를 하였다. 오분류에 대한 정보를 얻기 위해서 Tenenbein(1970)에 의해 연구된 이중추출법을 이용하여 오분류 검정을 위한 새로운 통계량을 제안하였으며, 제안된 오분류 검정통계량에 관한 분포를 다양한 모의실험을 통하여 연구하였다.

  • PDF

Cost-Sensitive Case Based Reasoning using Genetic Algorithm: Application to Diagnose for Diabetes

  • Park Yoon-Joo;Kim Byung-Chun
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2006년도 춘계학술대회
    • /
    • pp.327-335
    • /
    • 2006
  • Case Based Reasoning (CBR) has come to be considered as an appropriate technique for diagnosis, prognosis and prescription in medicine. However, canventional CBR has a limitation in that it cannot incorporate asymmetric misclassification cast. It assumes that the cast of type1 error and type2 error are the same, so it cannot be modified according ta the error cast of each type. This problem provides major disincentive to apply conventional CBR ta many real world cases that have different casts associated with different types of error. Medical diagnosis is an important example. In this paper we suggest the new knowledge extraction technique called Cast-Sensitive Case Based Reasoning (CSCBR) that can incorporate unequal misclassification cast. The main idea involves a dynamic adaptation of the optimal classification boundary paint and the number of neighbors that minimize the tatol misclassification cast according ta the error casts. Our technique uses a genetic algorithm (GA) for finding these two feature vectors of CSCBR. We apply this new method ta diabetes datasets and compare the results with those of the cast-sensitive methods, C5.0 and CART. The results of this paper shaw that the proposed technique outperforms other methods and overcomes the limitation of conventional CBR.

  • PDF

파괴검사시(破壞檢査時)의 계수선별형(計數選別型) LTPD 보증(保證)샘플링 검사방식(檢査方式) (A Rectifying Inspection Plan Giving LTPD Protection for Destructive Testing)

  • 유문찬
    • 품질경영학회지
    • /
    • 제15권1호
    • /
    • pp.68-75
    • /
    • 1987
  • A rectifying inspection plan is considered for the case of destructive testing. Screening inspection for rejected lots is performed by some nondestructive testing which is prone to misclassification errors. Apparent defectives found in the screening process is replaced with apparent good items. The plan provides LTPD protection on each individual lot while the sum of the cost of testing and the cost due to producer's risk at process average quality is minimized. A brief discussion on average outgoing quality is also given.

  • PDF

유전자 알고리즘을 활용한 데이터 불균형 해소 기법의 조합적 활용

  • 장영식;김종우;허준
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2007년도 한국지능정보시스템학회
    • /
    • pp.309-320
    • /
    • 2007
  • The data imbalance problem which can be uncounted in data mining classification problems typically means that there are more or less instances in a class than those in other classes. It causes low prediction accuracy of the minority class because classifiers tend to assign instances to major classes and ignore the minor class to reduce overall misclassification rate. In order to solve the data imbalance problem, there has been proposed a number of techniques based on resampling with replacement, adjusting decision thresholds, and adjusting the cost of the different classes. In this paper, we study the feasibility of the combination usage of the techniques previously proposed to deal with the data imbalance problem, and suggest a combination method using genetic algorithm to find the optimal combination ratio of the techniques. To improve the prediction accuracy of a minority class, we determine the combination ratio based on the F-value of the minority class as the fitness function of genetic algorithm. To compare the performance with those of single techniques and the matrix-style combination of random percentage, we performed experiments using four public datasets which has been generally used to compare the performance of methods for the data imbalance problem. From the results of experiments, we can find the usefulness of the proposed method.

  • PDF

거리 근사를 이용하는 고속 최근 이웃 탐색 분류기에 관한 연구 (Study on the fast nearest-neighbor searching classifier using distance approximation)

  • 이일완;채수익
    • 전자공학회논문지C
    • /
    • 제34C권2호
    • /
    • pp.71-79
    • /
    • 1997
  • In this paper, we propose a new nearest-neighbor classifier with reduced computational complexity in search process. In the proposed classifier, the classes are divided into two sets: reference and non-reference sets. It reduces computational requriement by approximating the distance between the input and a class iwth the information of distances among the calsses. It calculates only the distance between the input and the reference classes. We convert a given classifier into RCC (reduced computational complexity but smal lincrease in misclassification probability of its corresponding RCC classifier. We designed RCC classifiers for the recognition of digits from the NIST database. We obtained an RCC classifier with 60% reduction in the computational complexity with the cost of 0.5% increase in misclassification probability.

  • PDF

Modifying linearly non-separable support vector machine binary classifier to account for the centroid mean vector

  • Mubarak Al-Shukeili;Ronald Wesonga
    • Communications for Statistical Applications and Methods
    • /
    • 제30권3호
    • /
    • pp.245-258
    • /
    • 2023
  • This study proposes a modification to the objective function of the support vector machine for the linearly non-separable case of a binary classifier yi ∈ {-1, 1}. The modification takes into account the position of each data item xi from its corresponding class centroid. The resulting optimization function involves the centroid mean vector, and the spread of data besides the support vectors, which should be minimized by the choice of hyper-plane β. Theoretical assumptions have been tested to derive an optimal separable hyperplane that yields the minimal misclassification rate. The proposed method has been evaluated using simulation studies and real-life COVID-19 patient outcome hospitalization data. Results show that the proposed method performs better than the classical linear SVM classifier as the sample size increases and is preferred in the presence of correlations among predictors as well as among extreme values.

비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형 (An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems)

  • 이현욱;김지훈;안현철
    • 지능정보연구
    • /
    • 제18권1호
    • /
    • pp.125-141
    • /
    • 2012
  • 본 연구는 최근 그 중요성이 한층 높아지고 있는 침입탐지시스템(IDS, Intrusion Detection System)의 침입탐지모형을 개선하기 위한 방안으로 유전자 알고리즘에 기반한 새로운 통합모형을 제시한다. 본 연구의 제안모형은 서로 상호보완적 관계에 있는 이분류 모형인 로지스틱 회귀분석(LOGIT, Logistic Regression), 의사결정나무(DT, Decision Tree), 인공신경망 (ANN, Artificial Neural Network), 그리고 SVM(Support Vector Machine)의 예측결과에 적절한 가중치를 부여해 최종 예측결과를 산출하도록 하였는데, 이 때 최적 가중치의 탐색을 위한 방법으로는 유전자 알고리즘을 사용한다. 아울러, 본 연구에서는 1차적으로 오탐지율을 최소화하는 최적의 모형을 산출한 뒤, 이어 비대칭 오류비용 개념을 반영해 오탐지로 인해 발생할 수 있는 전체 비용을 최소화할 수 있는 최적 임계치를 탐색, 최종적으로 가장 비용 효율적인 침입탐지모형을 도출하고자 하였다. 본 연구에서는 제안모형의 우수성을 확인하기 위해, 국내 한 공공기관의 보안센서로부터 수집된 로그 데이터를 바탕으로 실증 분석을 수행하였다. 그 결과, 본 연구에서 제안한 유전자 알고리즘 기반 통합모형이 인공신경망이나 SVM만으로 구성된 단일모형에 비해 학습용과 검증용 데이터셋 모두에서 더 우수한 탐지율을 보임을 확인할 수 있었다. 비대칭 오류비용을 고려한 전체 비용의 관점에서도 단일모형으로 된 비교모형에 비해 본 연구의 제안모형이 더 낮은 비용을 나타냄을 확인할 수 있었다. 이렇게 실증적으로 그 효과가 검증된 본 연구의 제안 모형은 앞으로 보다 지능화된 침입탐지시스템을 개발하는데 유용하게 활용될 수 있을 것으로 기대된다.

대용품질특성치를 이용한 계수선별형 샘플링 검사방식의 경제적 설계 (An Economic Design of Rectifying Inspection Plans Based on a Correlated Variable)

  • 배도선;이경택;최인수
    • 대한산업공학회지
    • /
    • 제23권4호
    • /
    • pp.793-802
    • /
    • 1997
  • A sampling plan is presented for situations where sampling inspection is based on the quality characteristic of interest and items in rejected lots are screened based on a correlated variable. A cost model is constructed which involves the costs of misclassification errors, sampling and screening inspections. A method of finding optimal values of sample size, acceptance number and cutoff value on the correlated variable is presented, and numerical studies are given.

  • PDF

Optimum Screening Procedures Using Prior Information

  • Kim, Sang-Boo
    • 품질경영학회지
    • /
    • 제22권1호
    • /
    • pp.142-151
    • /
    • 1994
  • Optimum screening procedures using prior information are presented. An optimal cutoff value on the screening variable X minimizing the expected total cost is obtained for the normal model; it is assumed that a continuous screening variable X given a dichotomous performance variable T is normally distributed and that costs are incurred by screening inspection and misclassification errors. Methods for finding optimal cutoff values based on the prior distributions for unknown parameters are presented.

  • PDF