• Title/Summary/Keyword: mirror imaging

Search Result 117, Processing Time 0.024 seconds

Reflective Fourier Ptychographic Microscopy Using Segmented Mirrors and a Mask

  • Ahn, Hee Kyung;Chon, Byong Hyuk
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.40-44
    • /
    • 2021
  • In this paper, LED arrays with segmented mirrors and a mask are presented as a new dark-field illuminator for reflective Fourier ptychographic microscopy (FPM). The illuminator can overcome the limitations of the size and the position of samples that the dark-field illuminator using a parabolic mirror has had. The new concept was demonstrated by measuring a USAF 1951 target, and it resolved a pattern in group 10 element 6 (274 nm) in the USAF target. The new design of the dark-field illuminator can enhance competitiveness of the reflective FPM as a versatile measurement method in industry.

Super multi-view 3-D display system based on focused light Array using reflective vibrating scanner array (ViSA)

  • Ho-In Jeon;Nak-Hee Jung;Jin-San Choi;Young Jung;Young Huh
    • Broadcasting and Media Magazine
    • /
    • v.6 no.2
    • /
    • pp.84-101
    • /
    • 2001
  • In this paper, we present a primitive system design of a super multi-view(SMV) 3-D display system based on a focused light array(FLA) concept using reflective vibrating scanner array(ViSA). The parallel beam scanning using a vibrating scanner array is performed by moving left and right an array of curvature-compensated mirrors or diamond-ruled reflective grating attached to a vibrating membrane. The parallel laser beam scanner array can replace the polygon mirror scanner which has been used in the SMV 3-D display system based on the focused light array(FLA) concept proposed by Kajiki at TAO(Telecommunications) Advancement Organization). The proposed system has great advantages in the sense that it requires neither huge imaging optics nor mechanical scanning pals. Some mathematical analyses and fundamental limitations of the proposed system are presented. The proposed vibrating scanner array, after some modifications and refinements, may replace polygon mirror-based scanners in the near future.

  • PDF

Research on Thermal Refocusing System of High-resolution Space Camera

  • Li, Weiyan;Lv, Qunbo;Wang, Jianwei;Zhao, Na;Tan, Zheng;Pei, Linlin
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.69-78
    • /
    • 2022
  • A high-resolution camera is a precise optical system. Its vibrations during transportation and launch, together with changes in temperature and gravity field in orbit, lead to different degrees of defocus of the camera. Thermal refocusing is one of the solutions to the problems related to in-orbit defocusing, but there are few relevant thermal refocusing mathematical models for systematic analysis and research. Therefore, to further research thermal refocusing systems by using the development of a high-resolution micro-nano satellite (CX6-02) super-resolution camera as an example, we established a thermal refocusing mathematical model based on the thermal elasticity theory on the basis of the secondary mirror position. The detailed design of the thermal refocusing system was carried out under the guidance of the mathematical model. Through optical-mechanical-thermal integration analysis and Zernike polynomial calculation, we found that the data error obtained was about 1%, and deformation in the secondary mirror surface conformed to the optical index, indicating the accuracy and reliability of the thermal refocusing mathematical model. In the final ground test, the thermal vacuum experimental verification data and in-orbit imaging results showed that the thermal refocusing system is consistent with the experimental data, and the performance is stable, which provides theoretical and technical support for the future development of a thermal refocusing space camera.

A Handheld Probe Based Optical Coherence Tomography System for Diagnosis of Dental Calculus (치석 진단용 소형 프로브 기반 광간섭단층촬영 시스템)

  • Lee, Chang-Ho;Woo, Chai-Kyoung;Jung, Woong-Gyu;Kang, Hyun-Wook;Oh, Jung-Hwan;Kim, Jee-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.217-222
    • /
    • 2012
  • Optical coherence tomography(OCT) is a noninvasive optical imaging tool for biomedical applications. OCT can provide depth resolved two/three dimensional morphological images on biological samples. In this paper, we integrated an OCT system that was composed of an SLED(Superluminescent Light Emitting Diode, ${\lambda}_0$=1305 nm bandwith= 141 nm), a reference arm adopting a rapid scanning optical delay line(RSOD) to get high speed imaging, and a sample arm that used a micro electro mechanical systems(MEMS) scanning mirror. The sample arm contained a compact probe for imaging dental structures. The performance of the system was evaluated by imaging in-vivo human teeth with dental calculus, and the results indicated distinct appearance of dental calculus from enamel, gum or decayed teeth. The developed probe and system could successfully confirm the presence of dental calculus with a very high spatial resolution($6{\mu}m$).

Single Camera Omnidirectional Stereo Imaging System (단일 카메라 전방향 스테레오 영상 시스템)

  • Yi, Soo-Yeong;Choi, Byung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.400-405
    • /
    • 2009
  • A new method for the catadioptric omnidirectional stereo vision with single camera is presented in this paper. The proposed method uses a concave lens with a convex mirror. Since the optical part of the proposed method is simple and commercially available, the resultant omnidirectional stereo system becomes versatile and cost-effective. The closed-form solution for 3D distance computation is presented based on the simple optics including the reflection and the reflection of the convex mirror and the concave lens. The compactness of the system and the simplicity of the image processing make the omnidirectional stereo system appropriate for real-time applications such as autonomous navigation of a mobile robot or the object manipulation. In order to verify the feasibility of the proposed method, an experimental prototype is implemented.

Non-Paraxial Diffraction Effect of High NA Objectives (높은 개구수를 가지는 대물렌즈의 비근축 회절효과)

  • Lee, Jong Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • By using finite ray-tracing and curve fitting, a numerical method to determine the non-paraxial pupil function of a high-NA objective is presented. MTF degradations caused by the non-paraxial diffraction effect are analyzed for on-axial imaging of a far-infrared objective and aberration-free ellipsoidal mirror system. The ellipsoidal mirror system has the same paraxial specifications as the far-infrared objective.

Three-Dimensional Shape Measurement of a Specular Object by LED Array Reflection (LED Array의 반사영상에 의한 경면체의 3차원 형상 측정)

  • Kim, Jee Hong
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.1
    • /
    • pp.41-46
    • /
    • 2016
  • An optical method to measure the three-dimensional (3D) shape of a surface with specular reflection is proposed. The proposed method is based on the analysis of the geometric path of the light from a point source, and the relative displacements of points in the reflection image. The 3D shape of a concave mirror is shown to be determined approximately via experiments, where the vision system consists of LED array illumination, a half-mirror, and an imaging sensor.

Optical Design of a High-numerical-aperture Objective with a Reflective Focal Reducer (반사형 Focal Reducer를 가지는 높은 개구수의 대물렌즈 설계)

  • Jong Ung Lee
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.248-260
    • /
    • 2023
  • A 0.5-numerical-aperture (NA) refractive-reflective objective, composed of a low-NA refractive and a reflective focal reducer, is designed. A 0.25-NA Lister objective is used for the refractive. A two-spherical-mirror system, corrected for spherical aberration, coma, and astigmatism is used for the reflective focal reducer. In spite of high NA, the refractive-reflective objective has an 18-mm working distance and improved imaging performance, compared to the 0.25-NA Lister objective.

Optical Design and Fabrication of a Large Telephoto Zoom Lens with Fixed f/2.8 and Light Autofocus Lens

  • Ryu, Jae Myung;Gang, Geon Mo;Lee, Hyuck Ki;Lee, Ki Woo;Heu, Min;Jo, Jae Heung
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.629-637
    • /
    • 2015
  • Compact system cameras (CSCs) are commonly used nowadays and feature enhanced video functions and thin yet light interchangeable lenses. They differ from digital single-lens reflex (DSLR) cameras in their lack of mirror boxes. CSCs, however, have autofocus (AF) speeds lower than those of conventional DSLRs, requiring weight reduction of their AF groups. To ensure the marketability of large telephoto zoom lenses with fixed f/2.8 regardless of field angle variation, in particular, light weight AF groups are essential. In this paper, we introduce a paraxial optical design method and present a new, large, telephoto zoom lens with f/2.8 regardless of the field angle variation, plus a lightweight AF group consisting of only one lens. Using the basic paraxial optical design and optimization methods, we fabricated a new and lighter zoom lens system, including a single-lens, lightweight AF group with almost the same performance.

Opto-mechanical Analysis for Primary Mirror of Earth Observation Camera of the MIRIS (MIRIS EOC 주경의 광기계 해석)

  • Park, Kwi-Jong;Moon, Bong-Kon;Park, Sung-Jun;Park, Young-Sik;Lee, Dae-Hee;Ree, Chang-Hee;Nah, Jak-Young;Jeong, Woog-Seob;Pyo, Jeong-Hyun;Lee, Duk-Hang;Nam, Uk-Won;Rhee, Seung-Wu;Yang, Sun-Choel;Han, Won-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.6
    • /
    • pp.262-268
    • /
    • 2011
  • MIRIS(Multi-purpose Infra-Red Imaging System) is the main payload of the STSAT-3(Korea Science and Technology Satellite. 3), which is being developed by KASI(Korea Astronomy & Space Institute). EOC(Earth Observation Camera), which is one of two infrared cameras in MIRIS, is the camera for observing infrared rays from the Earth in the range of $3{\sim}5{\mu}m$. The optical system of the EOC is a Cassegrain prescription with aspheric primary and secondary mirrors, and its aperture is 100mm. A ring type flexure supports the EOC primary mirror with pre-loading in order to withstand expected load due to the shock and vibration from the launcher. Here we attempt to use the same mechanism by which a retainer supports the lens. Through opto-mechanical analysis it was confirmed that the EOC primary mirror is effectively supported.