• Title/Summary/Keyword: mirror imaging

Search Result 117, Processing Time 0.021 seconds

The Role of Thallium-201 Scintigraphy in Bone and Soft Tissue Tumor (근골격계 종양에서 탈륨 스캔의 역할)

  • Shin, Duk-Seop
    • Journal of Yeungnam Medical Science
    • /
    • v.20 no.2
    • /
    • pp.117-128
    • /
    • 2003
  • Thallium-201 scintigraphy is used to discriminate the malignant bone tumor from the benign by qualitatively and quantitatively, and to predict the response of preoperative chemotherapy in osteosarcoma, by comparing the changes of thallium uptake ratio after chemotherapy to the tumor necrosis ratio. Thallium-201 scintigraphy scan should be done prior to surgical biopsy. PICKER Prism 2000 gamma camera with high resolution parallel hole collimator is usually used for scanning. The patient is injected with 2-3mCi of Tl-201 and the early phase is checked in 30 minutes and delayed phase in 3 hours. The scan images are visually evaluated by a blinded nuclear medicine physician. We could evaluate true positive, true negative, false positive and false negative by the comparison of results with those of biopsy, and calculate positive and negative predictive value(%), sensitivity(%), specificity(%) and diagnostic accuracy(%). For the quantitative analysis of thallium uptake, we drew the region of interest on the tumor side and contralateral normal side as mirror image, and calculated the uptake ratio with dividing the amount of gamma count in tumor side by normal side. We could calculate the percent changes of thallium uptake ratio in early and delayed phase, and compare them to the ratio of tumor necrosis. Thallium-201 scintigraphy proved as useful imaging study to discriminate malignant bone tumor from benign, but had exception in giant cell tumor and low grade malignant bone tumors. We can use T1-201 scan to differentiate the benign from the malignant tumor, and to evaluate the response of preoperative chemotherapy or radiotherapy, and to determine the residual tumor or local recurrence. For the better result, we need to have a more detail information about false positive cases and a more objective and quantitative reading technique.

  • PDF

Mandible Reconstruction with 3D Virtual Planning

  • Woo, Taeyong;Kraeima, Joep;Kim, Yong Oock;Kim, Young Seok;Roh, Tai Suk;Lew, Dae Hyun;Yun, In Sik
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.2
    • /
    • pp.90-93
    • /
    • 2015
  • The fibula free flap has now become the most reliable and frequently used option for mandible reconstruction. Recently, three dimensional images and printing technologies are applied to mandibular reconstruction. We introduce our recent experience of mandibular reconstruction using three dimensionally planned fibula free flap in a patient with gunshot injury. The defect was virtually reconstructed with three-dimensional image. Because bone fragments are dislocated from original position, relocation was necessary. Fragments are virtually relocated to original position using mirror image of unaffected right side of the mandible. A medical rapid prototyping (MRP) model and cutting guide was made with 3D printer. Titanium reconstruction plate was adapted to the MRP model manually. 7 cm-sized fibula bone flap was designed on left lower leg. After dissection, proximal and distal margin of fibula flap was osteotomized by using three dimensional cutting guide. Segmentation was also done as planned. The fibula bone flap was attached to the inner side of the prebent reconstruction plate and fixed with screws. Postoperative evaluation was done by comparison between preoperative planning and surgical outcome. Although dislocated condyle is still not in ideal position, we can see that reconstruction was done as planned.

Applying tilt mechanism for high-resolution image acquisition (고해상도 영상 획득을 위한 틸트 메커니즘 적용 기법)

  • Song, Chun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.31-37
    • /
    • 2014
  • In this paper, to compensate the degraded performance in high-resolution infrared sensor due to assembling error, the influence of each component was evaluated through the sensitivity analysis of lens assembly, axis mirror, and detector and also suggested detector tilt mechanism for compensation. 3 detector tilt mechanisms were investigated. The first one is 'Shim plate' method which is applying shim on installing plane. The second one is 'Tilting screw' method that is using tilt screw for adjusting detection plane. The last one is 'Micrometer head' method that is installing micrometer on detection plane and acquiring quantitative data. Based on the investigation result, 'Tilting screw' method was applied due to ease of user control, small volume, and real-time controllability, thereby we could acquire high-resolution infrared images. The research result shows that the tilting mechanism is necessary technology for the implementation of high-resolution infrared imaging system.

Customized Cranioplasty Implants Using Three-Dimensional Printers and Polymethyl-Methacrylate Casting

  • Kim, Bum-Joon;Hong, Ki-Sun;Park, Kyung-Jae;Park, Dong-Hyuk;Chung, Yong-Gu;Kang, Shin-Hyuk
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.6
    • /
    • pp.541-546
    • /
    • 2012
  • Objective : The prefabrication of customized cranioplastic implants has been introduced to overcome the difficulties of intra-operative implant molding. The authors present a new technique, which consists of the prefabrication of implant molds using three-dimensional (3D) printers and polymethyl-methacrylate (PMMA) casting. Methods : A total of 16 patients with large skull defects (>100 $cm^2$) underwent cranioplasty between November 2009 and April 2011. For unilateral cranial defects, 3D images of the skull were obtained from preoperative axial 1-mm spiral computed tomography (CT) scans. The image of the implant was generated by a digital subtraction mirror-imaging process using the normal side of the cranium as a model. For bilateral cranial defects, precraniectomy routine spiral CT scan data were merged with postcraniectomy 3D CT images following a smoothing process. Prefabrication of the mold was performed by the 3D printer. Intraoperatively, the PMMA implant was created with the prefabricated mold, and fit into the cranial defect. Results : The median operation time was $184.36{\pm}26.07$ minutes. Postoperative CT scans showed excellent restoration of the symmetrical contours and curvature of the cranium in all cases. The median follow-up period was 23 months (range, 14-28 months). Postoperative infection was developed in one case (6.2%) who had an open wound defect previously. Conclusion : Customized cranioplasty PMMA implants using 3D printer may be a useful technique for the reconstruction of various cranial defects.

Visibility Enhancement of Underwater Stereo Images Using Depth Image (깊이 영상을 이용한 수중 스테레오 영상의 가시성 개선)

  • Shin, Hyoung-Chul;Kim, Sang-Hoon;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.684-694
    • /
    • 2012
  • In the underwater environment, light is absorbed and scattered by water and floating particles, which makes the underwater images suffer from color degradation and limited visibility. Physically, the amount of the scattered light transmitted to the image is proportional to the distance between the camera and the object. In this paper, the proposed visibility enhancement. method utilizes depth images to estimate the light transmission and the degradation factor by the scattered light. To recover the scatter-free images without unnatural artifacts, the proposed method normalizes the degradation factor based on the value of each pixel of the image. Finally, the scatter-free images are obtained by removing the scattered components on the image according to the estimated transmission. The proposed method also considers the color discrepancies of underwater stereo images so that the stereo images have the same color appearance after the visibility enhancement. The experimental results show that the proposed method improves the color contrast more than 5% to 14% depending on the experimental images.

AUTO-GUIDING SYSTEM FOR CQUEAN (CAMERA FOR QUASARS IN EARLY UNIVERSE)

  • Kim, Eun-Bin;Park, Won-Kee;Jeong, Hyeon-Ju;Kim, Jin-Young;Kuehne, John;Kim, Dong-Han;Kim, Han-Geun;Odoms, Peter S.;Chang, Seung-Hyuk;Im, Myung-Shin;Pak, Soo-Jong
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.4
    • /
    • pp.115-123
    • /
    • 2011
  • To perform imaging observations of optically red objects such as high redshift quasars and brown dwarfs, the Center for the Exploration of the Origin of the Universe (CEOU) recently developed an optical CCD camera, Camera for QUasars in EArly uNiverse (CQUEAN), which is sensitive at 0.7-1.1 ${\mu}m$. To enable observations with long exposures, we develop an auto-guiding system for CQUEAN. This system consists of an off-axis mirror, a baffle, a CCD camera, a motor and a differential decelerator. To increase the number of available guiding stars, we design a rotating mechanism for the off-axis guiding camera. The guiding field can be scanned along the 10 arcmin ring offset from the optical axis of the telescope. Combined with the auto-guiding software of the McDonald Observatory, we confirm that a stable image can be obtained with an exposure time as long as 1200 seconds.

Design and Performance of a Catadioptric Omnidirectional Zoom Optical System Using a Hybrid Lens for Visible Light (가시광에서 하이브리드 렌즈를 사용한 반사굴절식 전방위 줌 광학계의 설계 및 성능평가)

  • Park, Hyun Sik;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.96-104
    • /
    • 2020
  • A catadioptric omnidirectional zoom optical system using a hybrid lens (COZOSH) that performs simultaneously two functions of a lens and a mirror was designed at the visible wavelength range for daytime unmanned surveillance, and its performance was analyzed. The hybrid lens has lots of advantages in terms of fabrication and assembly of a COZOSH, because of the obviation of a lens boring process and reduction of the number of optical components. Additionally, we designed the COZOSH to expand the compressed inner-image region of a donut image at low spatial frequencies. As a result, the optimized design performance of the optical system that satisfies all initial design specifications was obtained from calculation of the modulation transfer function, spot diagram, and tolerance analysis. We confirmed that the COZOSH is a passively athermalized optical system under conditions of temperature variation from -30℃ to 50℃, by using athermalization analysis during zooming.

Development of Respiration Sensors Using Plastic Optical Fiber for Respiratory Monitoring Inside MRI System

  • Yoo, Wook-Jae;Jang, Kyoung-Won;Seo, Jeong-Ki;Heo, Ji-Yeon;Moon, Jin-Soo;Park, Jang-Yeon;Lee, Bong-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.235-239
    • /
    • 2010
  • In this study, we have fabricated two types of non-invasive fiber-optic respiration sensors that can measure respiratory signals during magnetic resonance (MR) image acquisition. One is a nasal-cavity attached sensor that can measure the temperature variation of air-flow using a thermochromic pigment. The other is an abdomen attached sensor that can measure the abdominal circumference change using a sensing part composed of polymethyl-methacrylate (PMMA) tubes, a mirror and a spring. We have measured modulated light guided to detectors in the MRI control room via optical fibers due to the respiratory movements of the patient in the MR room, and the respiratory signals of the fiber-optic respiration sensors are compared with those of the BIOPAC$^{(R)}$ system. We have verified that respiratory signals can be obtained without deteriorating the MR image. It is anticipated that the proposed fiber-optic respiration sensors would be highly suitable for respiratory monitoring during surgical procedures performed inside an MRI system.

Satellite Laser Ranging System at Geochang Station

  • Lim, Hyung-Chul;Sung, Ki-Pyoung;Yu, Sung-Yeol;Choi, Mansoo;Park, Eunseo;Park, Jong-Uk;Choi, Chul-Sung;Kim, Simon
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.253-261
    • /
    • 2018
  • Korea Astronomy and Space Science Institute (KASI) has been developing the space optical and laser tracking (SOLT) system for space geodesy, space situational awareness, and Korean space missions. The SOLT system comprises satellite laser ranging (SLR), adaptive optics (AO), and debris laser tracking (DLT) systems, which share numerous subsystems, such as an optical telescope and tracking mount. It is designed to be capable of laser ranging up to geosynchronous Earth orbit satellites with a laser retro-reflector array, space objects imaging brighter than magnitude 10, and laser tracking low Earth orbit space debris of uncooperative targets. For the realization of multiple functions in a novel configuration, the SOLT system employs a switching mirror that is installed inside the telescope pedestal and feeds the beam path to each system. The SLR and AO systems have already been established at the Geochang station, whereas the DLT system is currently under development and the AO system is being prepared for testing. In this study, the design and development of the SOLT system are addressed and the SLR data quality is evaluated compared to the International Laser Ranging Service (ILRS) tracking stations in terms of single-shot ranging precision. The analysis results indicate that the SLR system has a good ranging performance, to a few millimeters precision. Therefore, it is expected that the SLR system will not only play an important role as a member of the ILRS tracking network, but also contribute to future Korean space missions.

Optical System Design for Real-Time 3-Dimension Ophthalmoscope (실시간 3차원 검안경의 광학설계)

  • Lee, Soak-Hee;Yang, Yun-Sik;Choe, Oh-Mok;Sim, Sang-Hyun;Doo, Ha-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.1
    • /
    • pp.35-39
    • /
    • 2003
  • The display technology on the retina is the key role in inspecting the condition of the patients. 2-dimensional retina image is widely used in the eye examination as of today. Recently, 3-dimensional retina image ones have been introduced to this area, but the quality of the image is not fully satisfied to the operator. For the purpose of developing 3-D retina imaging instrument, the optimization of a 3-D retina imaging system using Code-V tool was investigated in this thesis. He-Ne laser having the wavelength 632.8 nm was used to make a power source to detect the retina. Several lenses and mirrors installed on sledge which were developed to perform focus control on 3-D device were designed to make a beam focusing and direct line. Polygon scanner having 24 mirror facets and galvanometer making tilting movement were utilized to make a 2-D laser plane. Also, design of eye ball had been fulfilled to see the focus of the 2-D plane. Reflected ray from retina detected on the sensor array with the same path. All cognitive components were optimized for aberration correction in order to focus on retina. Results of optimization were compared to those of initial designed optics system. On the basis of above results, the result of third aberration has been corrected to stable values to the optical system. MTF evaluating the resolution of an image has been closely correlated to the diffraction limit and PSF indicating the strength distribution of an image has shown the SR value as 0.9998 having high performance. The possibility of new and powerful 3-D retina image instrument was verified by simulating each component of the instrument by Code-V.

  • PDF