• Title/Summary/Keyword: minute gas leaks

Search Result 2, Processing Time 0.016 seconds

A Study on the Development of Low Power Automatic ON/OFF Valve System for Gas Leak Detection (가스 누출 감지를 위한 저전력 자동 ON/OFF 밸브 시스템 개발에 관한 연구)

  • Choi, Young Gyu
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.369-374
    • /
    • 2021
  • Apartment recently built in kitchen is made is made because the gas hose with built-in ways invisible inside the sink. In this case, if the gas leaks, it is a dangerous method that can accumulate inside the sink and lead to an explosion. In this study, since the hose connected between the gas range and the intermediate valve is inside the sink, it is not possible to test for gas leaks, so a valve system that can easily check for gas leaks using a pressure sensor was studied. As for the pressure measurement method, the pressure of the hose connecting the intermediate valve and the gas range was measured so that data could be collected and analyzed using the I2C communication method. In addition, the calculation of the gas pressure supplied to the home was investigated for the atmospheric pressure error for the value calculated by adding the average value of the gas gauge pressure of 22.46 mbar at the inlet of the gas meter to the atmospheric pressure. A valve system was developed to detect minute gas leaks.

An Predictive System for urban gas leakage based on Deep Learning (딥러닝 기반 도시가스 누출량 예측 모니터링 시스템)

  • Ahn, Jeong-mi;Kim, Gyeong-Yeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.41-44
    • /
    • 2021
  • In this paper, we propose a monitoring system that can monitor gas leakage concentrations in real time and forecast the amount of gas leaked after one minute. When gas leaks happen, they typically lead to accidents such as poisoning, explosion, and fire, so a monitoring system is needed to reduce such occurrences. Previous research has mainly been focused on analyzing explosion characteristics based on gas types, or on warning systems that sound an alarm when a gas leak occurs in industrial areas. However, there are no studies on creating systems that utilize specific gas explosion characteristic analysis or empirical urban gas data. This research establishes a deep learning model that predicts the gas explosion risk level over time, based on the gas data collected in real time. In order to determine the relative risk level of a gas leak, the gas risk level was divided into five levels based on the lower explosion limit. The monitoring platform displays the current risk level, the predicted risk level, and the amount of gas leaked. It is expected that the development of this system will become a starting point for a monitoring system that can be deployed in urban areas.

  • PDF