• Title/Summary/Keyword: mining system

Search Result 1,844, Processing Time 0.03 seconds

Analysis of Healthcare Quality Indicators using Data Mining and Development of a Decision Support System (데이터마이닝을 이용한 의료의 질 측정지표 분석 및 의사결정지원시스템 개발)

  • Kim, Hye Sook;Chae, Young-Moon;Tark, Kwan-Chul;Park, Hyun-Ju;Ho, Seung-Hee
    • Quality Improvement in Health Care
    • /
    • v.8 no.2
    • /
    • pp.186-207
    • /
    • 2001
  • Background : This study presented an analysis of healthcare quality indicators using data mining and a development of decision support system for quality improvement. Method : Specifically, important factors influencing the key quality indicators were identified using a decision tree method for data mining based on 8,405 patients who discharged from a medical center during the period between December 1, 2000 and January 31, 2001. In addition, a decision support system was developed to analyze and monitor trends of these quality indicators using a Visual Basic 6.0. Guidelines and tutorial for quality improvement activities were also included in the system. Result : Among 12 selected quality indicators, decision tree analysis was performed for 3 indicators ; unscheduled readmission due to the same or related condition, unscheduled return to intensive care unit, and inpatient mortality which have a volume bigger than 100 cases during the period. The optimum range of target group in healthcare quality indicators were identified from the gain chart. Important influencing factors for these 3 indicators were: diagnosis, attribute of the disease, and age of the patient in unscheduled returns to ICU group ; and length of stay, diagnosis, and belonging department in inpatient mortality group. Conclusion : We developed a decision support system through analysis of healthcare quality indicators and data mining technique which can be effectively implemented for utilization review and quality management in a healthcare organization. In the future, further number of quality indicators should be developed to effectively support a hospital-wide Continuous Quality Improvement activity. Through these endevours, a decision support system can be developed and the newly developed decision support system should be well integrated with the hospital Order Communication System to support concurrent review, utilization review, quality and risk management.

  • PDF

Research on the deformation characteristics and support methods of the cross-mining roadway floor influence by right-angle trapezoidal stope

  • Zhaoyi Zhang;Wei Zhang
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.293-306
    • /
    • 2024
  • Influenced by the alternating effects of dynamic and static pressure during the mining process of close range coal seams, the surrounding rock support of cross mining roadway is difficult and the deformation mechanism is complex, which has become an important problem affecting the safe and efficient production of coal mines. The paper takes the inclined longwall mining of the 10304 working face of Zhongheng coal mine as the engineering background, analyzes the key strata fracture mechanism of the large inclined right-angle trapezoidal mining field, explores the stress distribution characteristics and transmission law of the surrounding rock of the roadway affected by the mining of the inclined coal seam, and proposes a segmented and hierarchical support method for the cross mining roadway affected by the mining of the close range coal seam group. The research results indicate that based on the derived expressions for shear and tensile fracture of key strata, the ultimate pushing distance and ultimate suspended area of a right angle trapezoidal mining area can be calculated and obtained. Within the cross mining section, along the horizontal direction of the coal wall of the working face, the peak shear stress is located near the middle of the boundary. The cracks on the floor of the cross mining roadway gradually develop in an elliptical funnel shape from the shallow to the deep. The dual coupling support system composed of active anchor rod support and passive U-shaped steel shed support proposed in this article achieves effective control of the stability of cross mining roadways, which achieves effective control of floor by coupling active support and preventive passive support to improve the strength of the surrounding rock itself. The research results are of great significance for guiding the layout, support control, and safe mining of cross mining roadways, and to some extent, can further enrich and improve the relevant theories of roof movement and control.

A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

  • Oh, Jae-Won;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Cho, Hui-Je;Kim, Hyung-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.652-669
    • /
    • 2014
  • This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI) method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics.

Statistical Analysis and Prediction for Behaviors of Tracked Vehicle Traveling on Soft Soil Using Response Surface Methodology (반응표면법에 의한 연약지반 차량 거동의 통계적 분석 및 예측)

  • Lee Tae-Hee;Jung Jae-Jun;Hong Sup;Km Hyung-Woo;Choi Jong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.54-60
    • /
    • 2006
  • For optimal design of a deep-sea ocean mining collector system, based on self-propelled mining vehicle, it is imperative to develop and validate the dynamic model of a tracked vehicle traveling on soft deep seabed. The purpose of this paper is to evaluate the fidelity of the dynamic simulation model by means of response surface methodology. Various statistical techniques related to response surface methodology, such as outlier analysis, detection of interaction effect, analysis of variance, inference of the significance of design variables, and global sensitivity analysis, are examined. To obtain a plausible response surface model, maximum entropy sampling is adopted. From statistical analysis and prediction for dynamic responses of the tracked vehicle, conclusions will be drawn about the accuracy of the dynamic model and the performance of the response surface model.

Manufacturing process improvement of offshore plant: Process mining technique and case study

  • Shin, Sung-chul;Kim, Seon Yeob;Noh, Chun-Myoung;Lee, Soon-sup;Lee, Jae-chul
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.329-347
    • /
    • 2019
  • The shipbuilding industry is characterized by order production, and various processes are performed simultaneously in the construction of ships. Therefore, effective management of the production process and productivity improvement form important key factors in the industry. For decades, researchers and process managers have attempted to improve processes by using business process analysis (BPA). However, conventional BPA is time-consuming, expensive, and mainly based on subjective results generated by employees, which may not always correspond to the actual conditions. This paper proposes a method to improve the production process of offshore plant modules by analysing the process mining data obtained from the shipbuilding industry. Process mining uses information accumulated from the system-provided event logs to generate a process model and determine the values hidden within the process. The discovered process is visualized as a process model. Subsequently, alternatives are proposed by brainstorming problems (such as bottlenecks or idle time) in the process. The results of this study can aid in productivity improvement (idle time or bottleneck reduction in the production process) in conjunction with a six-sigma technique or ERP system. In future, it is necessary to study the standardization of the module production processes and development of the process monitoring system.

Data Mining Approach to Clinical Decision Support System for Hypertension Management (고혈압관리를 위한 의사지원결정시스템의 데이터마이닝 접근)

  • 김태수;채영문;조승연;윤진희;김도마
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.203-212
    • /
    • 2002
  • This study examined the predictive power of data mining algorithms by comparing the performance of logistic regression and decision tree algorithm, called CHAID (Chi-squared Automatic Interaction Detection), On the contrary to the previous studies, decision tree performed better than logistic regression. We have also developed a CDSS (Clinical Decision Support System) with three modules (doctor, nurse, and patient) based on data warehouse architecture. Data warehouse collects and integrates relevant information from various databases from hospital information system (HIS ). This system can help improve decision making capability of doctors and improve accessibility of educational material for patients.

  • PDF

Hybrid Type II fuzzy system & data mining approach for surface finish

  • Tseng, Tzu-Liang (Bill);Jiang, Fuhua;Kwon, Yongjin (James)
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.137-147
    • /
    • 2015
  • In this study, a new methodology in predicting a system output has been investigated by applying a data mining technique and a hybrid type II fuzzy system in CNC turning operations. The purpose was to generate a supplemental control function under the dynamic machining environment, where unforeseeable changes may occur frequently. Two different types of membership functions were developed for the fuzzy logic systems and also by combining the two types, a hybrid system was generated. Genetic algorithm was used for fuzzy adaptation in the control system. Fuzzy rules are automatically modified in the process of genetic algorithm training. The computational results showed that the hybrid system with a genetic adaptation generated a far better accuracy. The hybrid fuzzy system with genetic algorithm training demonstrated more effective prediction capability and a strong potential for the implementation into existing control functions.

Sequential Pattern Mining for Intrusion Detection System with Feature Selection on Big Data

  • Fidalcastro, A;Baburaj, E
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5023-5038
    • /
    • 2017
  • Big data is an emerging technology which deals with wide range of data sets with sizes beyond the ability to work with software tools which is commonly used for processing of data. When we consider a huge network, we have to process a large amount of network information generated, which consists of both normal and abnormal activity logs in large volume of multi-dimensional data. Intrusion Detection System (IDS) is required to monitor the network and to detect the malicious nodes and activities in the network. Massive amount of data makes it difficult to detect threats and attacks. Sequential Pattern mining may be used to identify the patterns of malicious activities which have been an emerging popular trend due to the consideration of quantities, profits and time orders of item. Here we propose a sequential pattern mining algorithm with fuzzy logic feature selection and fuzzy weighted support for huge volumes of network logs to be implemented in Apache Hadoop YARN, which solves the problem of speed and time constraints. Fuzzy logic feature selection selects important features from the feature set. Fuzzy weighted supports provide weights to the inputs and avoid multiple scans. In our simulation we use the attack log from NS-2 MANET environment and compare the proposed algorithm with the state-of-the-art sequential Pattern Mining algorithm, SPADE and Support Vector Machine with Hadoop environment.

A Robust and Device-Free Daily Activities Recognition System using Wi-Fi Signals

  • Ding, Enjie;Zhang, Yue;Xin, Yun;Zhang, Lei;Huo, Yu;Liu, Yafeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2377-2397
    • /
    • 2020
  • Human activity recognition is widely used in smart homes, health care and indoor monitor. Traditional approaches all need hardware installation or wearable sensors, which incurs additional costs and imposes many restrictions on usage. Therefore, this paper presents a novel device-free activities recognition system based on the advanced wireless technologies. The fine-grained information channel state information (CSI) in the wireless channel is employed as the indicator of human activities. To improve accuracy, both amplitude and phase information of CSI are extracted and shaped into feature vectors for activities recognition. In addition, we discuss the classification accuracy of different features and select the most stable features for feature matrix. Our experimental evaluation in two laboratories of different size demonstrates that the proposed scheme can achieve an average accuracy over 95% and 90% in different scenarios.

Finding Naval Ship Maintenance Expertise Through Text Mining and SNA

  • Kim, Jin-Gwang;Yoon, Soung-woong;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.7
    • /
    • pp.125-133
    • /
    • 2019
  • Because military weapons systems for special purposes are small and complex, they are not easy to maintain. Therefore, it is very important to maintain combat strength through quick maintenance in the event of a breakdown. In particular, naval ships are complex weapon systems equipped with various equipment, so other equipment must be considered for maintenance in the event of equipment failure, so that skilled maintenance personnel have a great influence on rapid maintenance. Therefore, in this paper, we analyzed maintenance data of defense equipment maintenance information system through text mining and social network analysis(SNA), and tried to identify the naval ship maintenance expertise. The defense equipment maintenance information system is a system that manages military equipment efficiently. In this study, the data(2,538cases) of some naval ship maintenance teams were analyzed. In detail, we examined the contents of main maintenance and maintenance personnel through text mining(word cloud, word network). Next, social network analysis(collaboration analysis, centrality analysis) was used to confirm the collaboration relationship between maintenance personnel and maintenance expertise. Finally, we compare the results of text mining and social network analysis(SNA) to find out appropriate methods for finding and finding naval ship maintenance expertise.