• 제목/요약/키워드: minimum volume design

검색결과 121건 처리시간 0.027초

Design of Automated Warehousing System for Increased S/R Machine Utilization

  • Hwang, H.;Ko, C.S.
    • 대한산업공학회지
    • /
    • 제14권2호
    • /
    • pp.99-114
    • /
    • 1988
  • The objective of this study is mainly related to design aspects of Multi-aisle S/R machine system (MASS) which can substantially reduce high initial investment cost of Automated Storage/Retrieval System. Firstly, the average travel time of the S/R machine is determined under single and dual commands, from which the average performance of S/R machine is evaluated. Secondly, a design model is developed and the system parameters, such as length and height of the system, and the number of S/R machines, traversers and aisles are determined which provide minimum initial investment and operating costs. Also, through experiments, sensitivity analysis is made for the throughput and storage volume.

  • PDF

반응표면법을 이용한 진동-음향 연성계의 흡음재 최적배치 (Optimum Allocation of Sound Absorbing Materials in a Vibroacoustic System using Response Surface Methodology)

  • 홍도관;백황순;우병철;안찬우
    • 한국정밀공학회지
    • /
    • 제28권10호
    • /
    • pp.1196-1203
    • /
    • 2011
  • Statistical optimum methodology of table of orthogonal array, ANOM, ANOVA and RSM are applied to formulate optimum allocation design with design variables. It can be minimized average SPL of control volume, the objective function in closed system by optimal allocated positions of absorbing material. Structural natural frequency and acoustic natural frequency of cavity are analyzed by FEM and BEM in the closed system. Using BEM, average SPL of specific control volume is calculated according to the condition before using absorbing material and after using it. It is shown that noise is reduced by $5.02dB_{RMS}$ by absorbing material located at optimal position and minimum $1.83dB_{RMS}$ and maximum $3.47dB_{RMS}$ by the table of orthogonal array.

산물형 포장상자의 최적설계 요인분석에 의한 설계 프로그램 개발 (Development of a Computer Program for Bulk-type Container Design using Optimum Design Parameter Analysis)

  • 박종민
    • Journal of Biosystems Engineering
    • /
    • 제28권4호
    • /
    • pp.315-324
    • /
    • 2003
  • If an optimum design technique is applied in the design of packaging container for bulk-type products, merits on the side of not only economic and compression performance but distribution efficiency are expected. Accordingly, minimum board area (mRBA), compression strength (CS) and compression strength per unit area (mCSPA) are important design parameters in optimum design of packaging container for bulk-type products. In this study, mathematical models for mRBA, CS and mCSPA of container as algorithm for optimum design program were developed. In order to develop these models, compression test by various dimensions of container and response surface analysis for mRBA, CS, and mCSPA of container were carried out. In the developed models, volume, W/L ratio and depth of container were principal independent variables. On the found of these models, optimum design program having faculties of outward and inward optimum design and information design was developed. Though the packaging specifications are same, required board area, board combination and cost of the corrugated board required container manufacture were greatly different by boundary conditions in outward design. Moreover, about 6.3∼10.1% in weight of container was lighter, and about 13.2∼25.6% in cost of container was reduced when the program was applied for 2 kinds of bulk-type products.

프로젝션 기법을 활용한 위상 최적설계 (Topology Design Optimization using Projection Method)

  • 하승현
    • 한국전산구조공학회논문집
    • /
    • 제29권4호
    • /
    • pp.293-299
    • /
    • 2016
  • 본 논문은 확장된 프로젝션 기법을 사용한 위상 최적설계 방법을 다루고 있다. 다양한 형상과 길이 스케일을 가지는 프로젝션 함수를 개발해 위상 최적설계 기법에 적용시킴으로써, 복합재료의 설계에서 형상 및 크기가 미리 주어진 보강재의 최적 배치를 위상 최적설계를 통해 결정할 수 있음을 확인하였다. 또한 이와 같은 프로젝션 기법이 균질화법과 결합되어 체적탄성률 또는 전단탄성률 등의 유효 재료특성을 최대화시키는 단위 구조를 설계함으로써, 주기 구조를 가지는 복합재료에서 보강재의 최적 배치를 결정하고 그 유효 재료특성값을 수치적으로 계산할 수 있음을 여러 수치 예제들을 통해서 검증하였다.

Optimum Design of a Pin-Fins Type Heat Sink Using the CFD and Mathematical Optimization

  • Park, Kyoung-Woo;Oh, Park-Kyoun;Lim, Hyo-Jae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권2호
    • /
    • pp.71-82
    • /
    • 2005
  • The shape of $7\times7$ pin-fins heat sink is optimized numerically to obtain the minimum pressure drop and thermal resistance. In this study, the fin height (h), fin width (w), and fan-to-heat sink distance (c) are chosen as the design variables and the pressure drop $({\Delta}P)$ and thermal resistance $(\theta_j)$ are adopted as the objective functions. To obtain the optimum design values, we used the finite volume method for calculating the objective functions, the BFGS method for solving the unconstrained non-linear optimization problem, and the weighting method for predicting the multi-objective problem. The results show that the optimum design variables for the weighting coefficient of 0.5 are as follows: W=4.653 mm, h=59.215mm, and c=2.667mm. The objective functions corresponding to the optimal design are calculated as ${\Delta}P=6.82$ Pa and $(\theta_j)=0.56K/W$. The Pareto solutions are also presented for various weighting coefficients and they will offer very useful data to design the pin-fins heat sink.

Use of design optimization techniques in solving typical structural engineering related design optimization problems

  • Fedorik, Filip;Kala, Jiri;Haapala, Antti;Malaska, Mikko
    • Structural Engineering and Mechanics
    • /
    • 제55권6호
    • /
    • pp.1121-1137
    • /
    • 2015
  • High powered computers and engineering computer systems allow designers to routinely simulate complex physical phenomena. The presented work deals with the analysis of two finite element method optimization techniques (First Order Method-FOM and Subproblem Approximation Method-SAM) implemented in the individual Design Optimization module in the Ansys software to analyze the behavior of real problems. A design optimization is a difficult mathematical process, intended to find the minimum or maximum of an objective function, which is mostly based on iterative procedure. Using optimization techniques in engineering designs requires detailed knowledge of the analyzed problem but also an ability to select the appropriate optimization method. The methods embedded in advanced computer software are based on different optimization techniques and their efficiency is significantly influenced by the specific character of a problem. The efficiency, robustness and accuracy of the methods are studied through strictly convex two-dimensional optimization problem, which is represented by volume minimization of two bars' plane frame structure subjected to maximal vertical displacement limit. Advantages and disadvantages of the methods are described and some practical tips provided which could be beneficial in any efficient engineering design by using an optimization method.

최소비용 기반 글로벌 항만 물류네트워크 모델 구축 (Design of Global Port Logistics Network Model Based on Minimum Cost)

  • 장운재;금종수
    • 한국항해항만학회지
    • /
    • 제32권1호
    • /
    • pp.65-72
    • /
    • 2008
  • 본 연구의 목적은 동아시아 지역을 중심으로 글로벌 항만 물류네트워크를 구축하여 우리나라의 새로운 항만정책을 제안하는 것에 있다. 이러한 항만 물류네트워크의 구축을 위해 세계 50위 항만 중 21개의 항만을 중심으로, 컨테이너 화물량과 기항지를 분석하여 EU, 북미를 연결시 최소 물류비용인 동아시아 지역의 4개의 대표항만을 추출하였다. 그 결과 동아시아에서는 싱가포르, 홍콩, 상하이, 부산항이 추출되었다. 따라서, 우리나라는 싱가포르, 홍콩, 상하이항에 해외 터미널을 운영하고 부산항과 연계하는 글로벌 항만 물류네트워크를 구축하여 안정적인 화물을 확보해야 한다.

공간 차원에 관한 시각적 패턴 연구 - 황금비, 피보나치 수열, 프랙털 이론을 중심으로 - (Study on Visual Patterns about Spatial Dimensions - Centered on the Golden Ratio, Fibonacci Sequence, and Fractal Theory -)

  • 김민석;김개천
    • 한국실내디자인학회논문집
    • /
    • 제23권1호
    • /
    • pp.88-95
    • /
    • 2014
  • This study intended arousal of other viewpoints that deal with and understand spaces and shapes, by describing the concept of 'dimensions' into visual patterns. Above all, the core concept of spatial dimensions was defined as 'expandability'. Then, first, the 'golden ratio', 'Fibonacci sequence', and 'fractal theory' were defined as elements of each dimension by stage. Second, a 'unit cell' of one dimension as 'minimum unit particles' was set. Next, Fibonacci sequence was set as an extended concept into two dimensions. Expansion into three dimensions was applied to the concept of 'self-similarity repetition' of 'Fractal'. In 'fractal dimension', the concept of 'regularity of irregularity' was set as a core attribute. Plus, Platonic solids were applied as a background concept of the setting of the 'unit cell' from the viewpoint of 'minimum unit particles'. Third, while 'characteristic patterns' which are shown in the courses of 'expansion' of each dimension were embodied for the visual expression forms of dimensions, expansion forms of dimensions are based on the premise of volume, directional nature, and concept of axes. Expressed shapes of each dimension are shown into visually diverse patterns and unexpected formative aspects, along with the expression of relative blank spaces originated from dualism. On the basis of these results, the 'unit cell' that is set as a concept of theoretical factor can be defined as a minimum factor of a basic algorism caused by other purpose. In here, by applying diverse pattern types, the fact that meaning spaces, shapes, and dimensions can be extracted was suggested.

설계시간교통량 산정방법 개선 (A Study on Improvement of the DDHV Estimating Method)

  • 문미경;장명순;강재수
    • 대한교통학회지
    • /
    • 제21권5호
    • /
    • pp.61-71
    • /
    • 2003
  • 기존의 DDHV는 양방향 시간교통량의 합으로부터 K계수. D계수를 도출하여 산정하고 있다. 이로 인해 설계순위와 실제순위의 차이, DDHV 산정값의 오차, DDHV의 불규칙한 변동 등의 문제점이 있다. 본 연구에서는 서로 독립적인 두 방향(상행, 하행)의 교통량 중 중방향 시간교통량에서 설계대상 순위를 결정하여, K계수와 D계수를 분리하지 않고 동시에 적용하는 방법(비분리방안)을 제시하였다. 일반국도 상시조사지점 360개 지점에 대하여 30순위를 기존 DDHV 산정방법(분리방안)으로 분석결과 다음과 같은 오차가 나타났다. - 설계순위와 실제순위가 357지점(99.2%)에서 불일치 - 실제순위 특성 : 평균 80순위, 최대 1,027순위. 최소 2순위 - 설계순위와 실제순위의 오차분포 : 10시간 내(30$\pm$10시간)가 106지점(29.4%). 254지점(70.6%)은 30순위와 $\pm$10순위이상 오차 발생 - DDHV 산정값의 오차율 : 평균 8.4%, 최대 46.7% 반면, 비분리방안은 설계순위와 실제순위가 전체 지점에서 일치하고 DDHV 산정값의 오차율이 "0"이므로, AADT가 정확한 것을 전제할 경우 비분리방안에 의해 설계시간교통량 산정시 평균 50순위, DDHV 8.4%의 오차 개선효과가 있는 것으로 분석되었다.것으로 분석되었다.

기준평면과 경계상자를 이용한 NC 절삭과정의 그래픽 시뮬레이션 (Graphic Simulation of Material Removal Process Using Bounding Box and Base Plane)

  • 이철수;박광렬
    • 한국CDE학회논문집
    • /
    • 제2권3호
    • /
    • pp.161-174
    • /
    • 1997
  • In this paper, the techniques for graphic simulation of material removal process are described. The concepts of the bounding box and base plane are proposed. With these concepts, a real-time shaded display of a Z-map model being milled by a cutting tool following an NC path can be implemented very efficiently. The base planes make it possible to detect the visible face of Z-map model effectively. And the bounding box of tool sweep volume provides minimum area of screen to be updated. The proposed techniques are suitable for implementation in raster graphic device and need a few memories and a small amount of calculation. Proposed method is written in C and executable on MS-Windows95 and Window-NT.

  • PDF