• Title/Summary/Keyword: minimum required pressure

Search Result 92, Processing Time 0.027 seconds

Development of Carbon Nanofiber Reinforced Cu Matrix Composites Using Liquid Pressing Process (액상 성형 가압법을 이용한 탄소나노섬유 강화 Cu 기지 나노 복합재료 개발)

  • 이상관;김두현;엄문광;하동호;김상식
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.50-53
    • /
    • 2003
  • Carbon nannofiber reinforced Cu matrix composite has potential applications for electrically conducting materials having high strength and electrical conductivity. In this study, we have developed fabrication technology of the nanocomposites using a liquid pressing process. The process is to use the low pressure for infiltration of Cu melt into carbon nanofiber mat as the Cu melt is pressurized directly. The minimum pressure required for infiltration was calculated from force balance equation, permeability measurement and compaction behavior of carbon nanofiber. Also, the melting temperature and the holding time have been optimized.

  • PDF

Thin Plate Fabrication and Characterization of Plain Woven Carbon / 6061 Al Composites (Plain woven carbon/6061Al 금속복합재료의 제조와 특성분석)

  • Chang Jae-Jun;Ha Dong-Ho;Eom Mun-Gwang;Lee Sang-kwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.250-253
    • /
    • 2004
  • Emphasis has been placed on thin plate fabrication of plain woven carbon fabric reinforced Al matrix composites using liquid pressing process. The composite has potential applications for PDP rear plate. The process is to use the low pressure for infiltration of Al melt into plain woven carbon fabric as the Al melt is pressurized directly. The minimum pressure required for the infiltration was calculated from force balance equation, permeability measurements and compaction behavior of carbon fiber. Also, the melting temperature and the holding time have been optimized. In order to measure coefficient of thermal expansion (CTE) of the composites, the thermal strain measurement using strain gage was performed and the thermal conductivity of the composites was measured using laser flash method. The constituent materials of the composite are PAN type carbon fibers as reinforcements and 6061 Al alloys as matrices.

  • PDF

Optimal Design of a Heat Sink using the Sequential Approximate Optimization Algorithm (순차적 근사최적화 기법을 이용한 방열판 최적설계)

  • Park Kyoungwoo;Choi Dong-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1156-1166
    • /
    • 2004
  • The shape of plate-fin type heat sink is numerically optimized to acquire the minimum pressure drop under the required temperature rise. In constrained nonlinear optimization problems of thermal/fluid systems, three fundamental difficulties such as high computational cost for function evaluations (i.e., pressure drop and thermal resistance), the absence of design sensitivity information, and the occurrence of numerical noise are commonly confronted. Thus, a sequential approximate optimization (SAO) algorithm has been introduced because it is very hard to obtain the optimal solutions of fluid/thermal systems by means of gradient-based optimization techniques. In this study, the progressive quadratic response surface method (PQRSM) based on the trust region algorithm, which is one of sequential approximate optimization algorithms, is used for optimization and the heat sink is optimized by combining it with the computational fluid dynamics (CFD).

Estimation of characteristic parameters of refrigerants by group contribution method (집단 기여법에 의한 냉매의 특성인자 예측)

  • Kim, Y.I.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.125-132
    • /
    • 1999
  • Studies are being done to replace conventional refrigerants with alternatives that have low or no ozone depletion and greenhouse warming Potentials, yet possess appropriate pro perties for a refrigeration cycle. To achieve this goal, a consistent set of thermodynamic properties of the working fluid is required. A common problem with the possible alternative refrigerants is that sufficient experimental data do not exist, thus making it difficult to develp complete equations of state that can predict properties in all regions including the vapor-liquid equilibrium. One solution is the use of the generalized equation of state correlations that can predict thermodynamic properties with a minimum number of characteristic parameters. Characteristic parameters required for the generalized equation of state are, in general, critical temperature, critical pressure, critical volume and normal boiling temperature. In this study, estimation of these characteristic parameters of refrigerants by group contribution method is developed.

  • PDF

A Review on Fit Test for Respirators and the Regulations (호흡기보호구의 Fit Test 방법과 규정에 관한 고찰)

  • Han, Don-Hee;Willeke, Klaus;Colton, Craig E.
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.38-54
    • /
    • 1996
  • Respirator fit testing is required before entering specific work environmentals to ensure that the respirator worn satisfies a minimum of fit and that the user knows when the respirator fits properly. The fit of a respirator can be determined by qualitative (QLFT) or quantitative fit test (QNFT). The QNFT, having been universally accepted more than the QLFT, provide an objective and numerical basis by measuring a fit factor (FF). Until a few years age, only one QNFT technigue was available and accepted by U.S. Occupational Safety and Health Administration (OSHA) regulations. In the 1980's and 1990's, several new and fundamentally different QNFT methods were developed. Two of the newer methods are commercially availale and are accepted by OSHA as suitable alternatives. In this articles, the principle of operation of each ONFT technique is explained and each technique's major advantages and disadvantages are pointed out. Emphasis is given to negative-pressure air-purifying respirators, as they are in most frequent use today. The requirements and recommendations for fit testing positive-pressure respirators are discussed as well. Finally, the presently available QNFT standards and regulations are summarized to assist the user in making fit testing decisions.

  • PDF

Effects of Condensation Heat Transfer Model in Calculation for KNGR Containment Pressure and Temperature Response

  • Eoh, Jae-Hyuk;Park, Shane;Jeun, Gyoo-Dong;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.241-253
    • /
    • 2001
  • Under severe accidents, the pressure and temperature response has an important role for the integrity of a nuclear power plant containment. The history of the pressure and temperature is characterized by the amount and state of steam/air mixture in a containment. Recently, the heat transfer rate to the structure surface is supposed to be increased by the wavy interface formed on condensate film. However, in the calculation by using CONTAIN code, the condensation heat transfer on a containment wall is calculated by assuming the smooth interface and has a tendency to be underestimated for safety. In order to obtain the best- estimate heat transfer calculation, we investigated the condensation heat transfer model in CONTAIN 1.2 code and adopted the new forced convection correlation which is considering wavy interface. By using the film tracking model in CONTAIN 1.2 code, the condensate film is treated to consider the effect of wavy interface. And also, it was carried out to investigate the effect of the different cell modelings - 5-cell and 10-cell modeling - for KNGR(Korean Next Generation Reactor) containment phenomena during a severe accident. The effect of wavy interface on condensate film appears to cause the decrease of peak temperature and pressure response . In order to obtain more adequate results, the proper cell modeling was required to consider the proper flow of steam/air mixture.

  • PDF

Comparison of the effects of target-controlled infusion-remifentanil/midazolam and manual fentanyl/midazolam administration on patient parameters in dental procedures

  • Lobb, Doug;Ameli, Nazila;Ortiz, Silvia;Lai, Hollis
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.22 no.2
    • /
    • pp.117-128
    • /
    • 2022
  • Background: Moderate sedation is an integral part of dental care delivery. Target-controlled infusion (TCI) has the potential to improve patient safety and outcome. We compared the effects of using TCI to administer remifentanil/manual bolus midazolam with manual bolus fentanyl/midazolam administration on patient safety parameters, drug administration times, and patient recovery times. Methods: In this retrospective chart review, records of patients who underwent moderate intravenous sedation over 12 months in a private dental clinic were assessed. Patient indicators (pre-, intra-, and post-procedure noninvasive systolic and diastolic blood pressure, respiration, and heart rate) were compared using independent t-test analysis. Patient recovery time, procedure length, and midazolam dosage required were also compared between the two groups. Results: Eighty-five patient charts were included in the final analysis: 47 received TCI-remifentanil/midazolam sedation, and 38 received manual fentanyl/midazolam sedation. Among the physiological parameters, diastolic blood pressure showed slightly higher changes in the fentanyl group (P = 0.049), respiratory rate changes showed higher changes in the fentanyl group (P = 0.032), and the average EtCO2 was slightly higher in the remifentanil group (P = 0.041). There was no significant difference in the minimum SpO2 levels and average procedure length between the fentanyl and remifentanil TCI pump groups (P > 0.05). However, a significant difference was observed in the time required for discharge from the chair (P = 0.048), indicating that patients who received remifentanil required less time for discharge from the chair than those who received fentanyl. The dosage of midazolam used in the fentanyl group was 0.487 mg more than that in the remifentanil group; however, the difference was not significant (P > 0.05). Conclusion: The combination of TCI administered remifentanil combined with manual administered midazolam has the potential to shorten the recovery time and reduce respiration rate changes when compared to manual administration of fentanyl/midazolam. This is possibly due to either the lower midazolam dosage required with TCI remifentanil administration or achieving a stable, steady-state low dose remifentanil concentration for the duration of the procedure.

Development of Chestnut Harvesters for Small Farms (소농을 위한 밤 수확기의 개발)

  • Kang, Whoa-Seug;Guyer, Daniel
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.384-389
    • /
    • 2008
  • Three prototype chestnut harvesters were constructed and evaluated their chestnut collection ability and field efficiency. Air-lock paddle system successfully picked up all loose material, and pick up efficiency was about 56 kg/h. Power required to operate this system was evaluated to be 8.7 kW with an air flow rate of $32.6\;m^3/min$. A radial blade type blower with 0.41 m impeller diameter was considered to be a minimum size for this system. For the auger system, air was sucked into the cylinder as the hinged flat cover began to be opened by the material pushed by the auger, and the empty burrs flew back to the container through the space between auger flights and collected in the bottom of the container. It was considered to add a device to prevent air from flowing back or to use the back flowing air for separation of burrs and nuts inside the container. The venturi system could not pick up chestnuts, as they only carried part way up to the suction hose. Consideration was given to an idea that the venturi could be used as a cleaning and separation mechanism for containers filled with both empty burrs and good nuts. A minimum vacuum of 129 mm wg was required to pick up chestnuts, and the corresponding inlet air velocity was 19.3 m/s. 104 mm of vacuum, which was about 81 % of that required for nuts, was enough to pick up burrs with nuts inside. Also, empty burrs with higher moisture content recorded the same pressure as for the burrs with nuts.

A bond graph approach to energy efficiency analysis of a self-powered wireless pressure sensor

  • Cui, Yong;Gao, Robert X.;Yang, Dengfeng;Kazmer, David O.
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.1-22
    • /
    • 2007
  • The energy efficiency of a self-powered wireless sensing system for pressure monitoring in injection molding is analyzed using Bond graph models. The sensing system, located within the mold cavity, consists of an energy converter, an energy modulator, and a ultrasonic signal transmitter. Pressure variation in the mold cavity is extracted by the energy converter and transmitted through the mold steel to a signal receiver located outside of the mold, in the form of ultrasound pulse trains. Through Bond graph models, the energy efficiency of the sensing system is characterized as a function of the configuration of a piezoceramic stack within the energy converter, the pulsing cycle of the energy modulator, and the thicknesses of the various layers that make up the ultrasonic signal transmitter. The obtained energy models are subsequently utilized to identify the minimum level of signal intensity required to ensure successful detection of the ultrasound pulse trains by the signal receiver. The Bond graph models established have shown to be useful in optimizing the design of the various constituent components within the sensing system to achieve high energy conversion efficiency under a compact size, which are critical to successful embedment within the mold structure.

Performance Analysis of a Vapor Compression Cycle Driven by Organic Rankine Cycle (유기 랭킨 사이클로 구동되는 증기압축 냉동사이클의 성능 해석)

  • Kim, Kyoung Hoon;Jin, Jaeyoung;Ko, Hyungjong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.521-529
    • /
    • 2012
  • Since the energy demand for refrigeration and air-conditioning has greatly increased all over the world, thermally activated refrigeration cycle has attracted much attention. This study carries out a performance analysis of a vapor compression cycle (VCC) driven by organic Rankine cycle (ORC) utilizing low-temperature heat source in the form of sensible heat. The ORC is assumed to produce minimum net work which is required to drive the VCC without generating an excess electricity. Effects of important system parameters such as turbine inlet pressure, condensing temperature, and evaporating temperature on the system variables such as mass flow ratio, net work production, and coefficient of performance (COP) are thoroughly investigated. The effect of choice of working fluid on COP is also considered. Results show that net work production and COP increase with increasing turbine inlet pressure or decreasing condensing temperature. Out of the five kinds of organic fluids considered $C_4H_{10}$ gives a relatively high COP in the range of low turbine inlet pressure.