• Title/Summary/Keyword: minimum power injection

Search Result 25, Processing Time 0.028 seconds

A New Control Scheme for Unified Power Quality Compensator-Q with Minimum Power Injection

  • Lee, Woo-Cheol
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.72-80
    • /
    • 2007
  • Voltage sags are one of the most frequently occurring power quality problems challenging power systems today. The Unified Power Quality Conditioner (UPQC) is one of the major custom power solutions that are capable of mitigating the effect of supply voltage sags at the load or Point of Common Coupling (PCC). A UPQC-Q employs a control method in which the series compensator injects a voltage that leads the supply current by $90^{\circ}C$ so that the series compensator at steady state consumes no active power. However, the UPQC-Q has the disadvantage that its series compensator needs to be overrated. Thus it cannot offer effective compensation. This paper proposes a new control scheme for the UPQC-Q that offers minimum power injection. The proposed minimum power injection method takes into consideration the limits on the rated voltage capacity of the series compensator and its control scheme. The validity of the proposed control scheme is investigated through simulation and experimental results.

Protection Strategies Against False Data Injection Attacks with Uncertain Information on Electric Power Grids

  • Bae, Junhyung;Lee, Seonghun;Kim, Young-Woo;Kim, Jong-Hae
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • False data injection attacks have recently been introduced as one of important issues related to cyber-attacks on electric power grids. These attacks aim to compromise the readings of multiple power meters in order to mislead the operation and control centers. Recent studies have shown that if a malicious attacker has complete knowledge of the power grid topology and branch admittances, s/he can adjust the false data injection attack such that the attack remains undetected and successfully passes the bad data detection tests that are used in power system state estimation. In this paper, we investigate that a practical false data injection attack is essentially a cyber-attack with uncertain information due to the attackers lack of knowledge with respect to the power grid parameters because the attacker has limited physical access to electric facilities and limited resources to compromise meters. We mathematically formulated a method of identifying the most vulnerable locations to false data injection attack. Furthermore, we suggest minimum topology changes or phasor measurement units (PMUs) installation in the given power grids for mitigating such attacks and indicate a new security metrics that can compare different power grid topologies. The proposed metrics for performance is verified in standard IEEE 30-bus system. We show that the robustness of grids can be improved dramatically with minimum topology changes and low cost.

Valve Openings and Minimum Pump Head for Precise Operation of Multiple Groundwater Injection Wells (군정의 주입량의 정밀 제어를 위한 유량조절밸브의 개도 및 최소 펌프 소요양정)

  • Park, Namsik;Jang, Chi Woong;Cho, Kwangwoo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.869-877
    • /
    • 2015
  • Freshwater may be injected into aquifers to combat sea water intrusion in groundwater or to store water for later retrieval. For these cases to achieve the desired goal groundwater modeling is commonly used to determine locations and rates of injection wells. When these wells are connected to a pipe network, a flow control valve is installed for each well to regulate the injection rate. When a valve opening is modified, pressure changes in the entire pipe network and thereby changes flow rates in other wells. Therefore, desired valve openings must be determined for all injection wells. The pipe flow analysis allows estimation of the minimum pump power in addition to valve openings. Methods are developed to identify valve openings for multiple wells and the minimum pump power. The methodology developed in this work can contribute to precise operation of multiple injection wells.

Effects of the Injected ASE Bandwidth on the Performance of Wavelength-locked Fabry-Perot Laser Diodes

  • Park Kun-Youl;Baik Jin-Serk;Lee Chang-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.45-48
    • /
    • 2005
  • We investigate effects of the injected ASE (Amplified spontaneous emission) bandwidth on the performance of the wavelength-locked Fabry-Perot laser diodes (F-P LDs) under constant injection power density and constant injection power. For the constant injection power density, we can determine the minimum injection bandwidth by the required intensity noise or the bit-error rate (BER) performance. On the other hand, there exists the optimal ASE bandwidth for the constant injection power to minimize the intensity noise.

Changes in Performance and Operating Condition of a Gas Turbine Combined Heat and Power System by Steam Injection - A Focus on Compressor Operation (증기분사에 의한 가스터빈 열병합발전 시스템의 성능과 운전조건 변화 - 압축기 작동 변화를 중심으로)

  • Kang, Soo-Young;Kim, Tong-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.68-75
    • /
    • 2011
  • This study simulated the effect of steam injection on the performance and operation of a gas turbine combined heat and power (CHP) system. A commercial simple cycle gas turbine was analyzed. A full off-design analysis was carried out to investigate the variations in not only engine performance but also the operating characteristics of the compressor caused by steam injection. Variation in engine performance and operation characteristics according to various operation modes were examined. First, the impact of full steam injection was investigated. Then, operations aiming to guarantee a minimum compressor surge margin, such as under-firing and partial steam injection, were investigated. The former and latter were turned out to be relatively superior to each other in terms of power and efficiency, respectively.

Study of harmonic reduction method in PWM Inverter of washing machine BLDC motor that use single current sensor (단일 전류 감지기를 이용한 세탁기 BLDC 모터의 PWM Inverter 에서 고조파 저감방법에 관한 연구)

  • Kim, Hwa-Sung;Yoo, Ji-Yoon
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.142-144
    • /
    • 2007
  • This paper proposes problem improvement in existing method about three-phase current reconstruction method and present minimum voltage injection method and Smooth voltage injection method in single current sensor for washing machine motor drive. So, presented wash noise improvement method through ripple reduction in inverter. The simulation and experimental results are given to show the effectiveness of the proposed method for reconstructing the phase currents and reducing the noises.

  • PDF

A Study on the Stratified Combustion and Stability of a Direct Injection LPG Engine (직접분사식 LPG 엔진의 성층화 연소 및 안정성에 관한 연구)

  • LEE, MINHO;KIM, KIHO;HA, JONGHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.106-113
    • /
    • 2016
  • Lean burn engine, classified into port injection and direct injection, is recognized as a promising way to meet better fuel economy. Especially, LPG direct injection engine is becoming increasingly popular due to their potential for improved fuel economy and emissions. Also, LPDi engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. However, LPDi engine has many difficulties to be solved, such as complexity of injection control mode (fuel injection timing, injection rate), fuel injection pressure, spark timing, unburned hydrocarbon and restricted power. This study is investigated to the influence of spark timing, fuel injection position and fuel injection rate on the combustion stability of LPDi engine. Piston shape is constituted the bowl type piston. The characteristics of combustion is analyzed with the variations of spark timing, fuel injection position and fuel injection rate (early injection, late injection) in a LPDi engine.

Electronic Ballast Using a Symmetrical Half-bridge Inverter Operating at Unity-Power-factor and High Efficiency

  • Suryawanshi Hiralal M.;Borghate Vijay B.;Ramteke Manojkumar R.;Thakre Krishna L.
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.330-339
    • /
    • 2006
  • This paper deals with novel electronic ballast based on single-stage power processing topology using a symmetrical half-bridge inverter and current injection circuit. The half-bridge inverter drives the output parallel resonant circuit and injects current through the power factor correction (PFC) circuit. Because of high frequency current injection and high frequency modulated voltage, the proposed circuit maintains the unity power factor (UPF) with low THD even under wide variation in ac input voltage. This circuit needs minimum and lower sized components to achieve the UPF and high efficiency. This leads to an increase in reliability of ballast at low cost. Furthermore, to reduce cost, the electronic ballast is designed for two series-connected fluorescent lamps (FL). The analysis and experimental results are presented for ($2{\times}36$ Watt) fluorescent lamps operating at 50 kHz switching frequency and input line voltage (230 V, 50 Hz).

The DC Link Energy Control Method of Dynamic Voltage Restorer System (DVR(Dynamic Voltage Restorer)에서의 직류에너지 제어 방법)

  • Jeong, Il-Yeop;Park, Sang-Yeong;Won, Dong-Jun;Mun, Seung-Il;Park, Jong-Geun;Han, Byeong-Mun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.12
    • /
    • pp.575-583
    • /
    • 2001
  • Dynamic Voltage Restorer(DVR) which is installed between the supply and a critical load can restore voltage disturbances in distribution system. The restoration is based on injecting the same voltages as voltage sags. The ideal restoration is compensation to make the load voltages be unchanged. But voltage restoration involves real power or energy injection and the capability of energy storage is limited. So it must be considered how injection energy can be minimized and voltages can be made close to the voltages before fault. This paper describes conventional restoration techniques, which draw minimum energy from the DVR in order to correct a given voltage sag or swell. And this paper proposes a new concept of restoration technique to inject minimum energy. The proposed method is based on the definition of voltage tolerance in load side. Hence using the proposed method a particular disturbance can be corrected with less amount of storage energy compared to those of conventional methods.

  • PDF

Overload Alleviation Algorithm by the Bus Injection Power Control (모선주입전력 조정에 의한 과부하 해소 앨고리즘)

  • 박규홍;정재길;안민옥
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.2
    • /
    • pp.111-118
    • /
    • 1990
  • This paper presents a new algorithm of contingency analysis and countermeasure to alleviate the line overloads for electric power systems. In this algorithm, the inverse matrix of the new Jacobian matrix when a contingency occurs, in fastly calculated using the house-holder's Inverse Matrix Modification Lamma (IMML) with the original factor table. The generation outputs are firstly adjusted to alleviate all line overloads occurred by the contingency without tripping loads. If the generation adjustment is not enough anymore to alleviate line overloads, then the control of bus injection power is recommended to quickly alleviate remaining overloads with minimum amount of load tripping and generation read-justing at the termination busbars of the overload lines. The proposed algorithm has been validated in tests on the 6 busbar test system.

  • PDF