• Title/Summary/Keyword: minimum oil film thickness(MOFT)

Search Result 7, Processing Time 0.019 seconds

A Study on the Minimum Oil Film Thickness of Connecting-rod Bearing in Engine (엔진 연결봉 베어링의 최소 유막 두께에 관한 연구)

  • Choi, Jae-Kwon;Heo, Gon;Han, Dong-Chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.04a
    • /
    • pp.39-53
    • /
    • 1993
  • The minimum oil film thickness(MOFT) in the connecting-rod bering of a 1.5 liter, L-4, gasoline engine is measured up to 5500 rpm and calculated to study the dynamically loaded engine bearing. Short bearing approximation and Mobility method are used for theoretical analysis of oil film charactrtistics. And cylinder pressure, crank-pin surface temperature and bearing tenp ture are measured as the input data of theoretical analysis. The MOFT are measured by the total capacitance method(TCM). To improve the reliability of the test results, a reasonable detmuuination method of bearing clearance is introduced and used, and the effects of cavitation and aeration on the test results are neglected. The crankshaft is grounded by means of a slip ring. A scissor type linkage system was developed to measure the MOFT and bearing temperature. The effects of engine speed, load and oil viscosity on the measured and calculated minimum oil film thicknesses are investigated at 1500 to 5500 rpm. From the comparison between the measured and calculated MOFT, it is found that a qualitative similarity exists between them, but in all cases, the measured MOFT are smaller than those calculated.

  • PDF

A Study, on the Minimum Oil Film Thickness of Connecting-rod Bearing in Engine (엔진 연결봉 베어링의 최소 유막 두께에 관한 연구)

  • Choi, Jae-Kwon;Hur, Kon;Han, Dong-Chul
    • Tribology and Lubricants
    • /
    • v.10 no.1
    • /
    • pp.14-26
    • /
    • 1994
  • The minimum oil film thickness(MOFT) in the connecting-rod bearing of a 1.5 liter, L-4, gasoline engine is measured up to 5500 rpm and calculated to study the dynamically loaded engine bearing. Short bearing approximation and Mobility method are used for theoretical analysis of oil film characteristics. And cylinder pressure, crank-pin surface temperature and bearing temperature are measured as the input data of theoretical analysis. The MOFT are measured by the total capacitance method(TCM). To improve the reliability of the test results, a reasonable determination method of bearing clearance is introduced and used, and the effects of cavitation and aeration on the test results are neglected. The crankshaft is grounded by means of a slip ring. A scissor type linkage system was developed to measure the MOFT and bearing temperature. The effects of engine speed, load and oil viscosity on the measured and calculated minimum oil film thicknesses are investigated at 1500 to 5500 rpm. From the comparison between the measured and calculated MOFT, it is found that a qualitative similarity exists between them, but in all cases, the measured MOFT are smaller than those calculated.

A Study on the Minimum Oil Film Thickness of Crankshaft Main Bearings in Engine (엔진 메인 베어링에서의 최소유막두께에 관한 연구)

  • 최재권;이정현;한동철
    • Tribology and Lubricants
    • /
    • v.8 no.2
    • /
    • pp.50-63
    • /
    • 1992
  • The minimum oil film thicknesses (MOFT) in the crankshaft main bearings of a 1.5 liter, L-4, gasoline engine are measured and calculated to study the dynamically loaded engine bearing. The MOFT are measured simultaneously at each of the five main bearings using the total capacitance method(TCM). To improve the reliability of the TCM, a reasonable determination method of bearing clearance is introduced and the effects of bearipg cavitation and aeration on the test results are analyzed. Also the crankshaft is grounded by means of a slip ring instead of the friction contact method to improve the test precision. The calculation is based on the model of statically determinate beam, short bearing approximation and Mobility method. From the comparison between the measured and calculated MOFT curves, it is found that a qualitative similarity exists between them, but in all cases, measured MOFT are smaller than that of calculated. The crankshaft vibration and the imbalance of the load distribution between the engine bearings have important influence upon the MOFT curve. So it is found that the calculation result from the model of the statically determinate beam has a limitation in predicting bearing performance.

A Study on the Optimum Clearance Selection of Fuel Pump Journal Bearing with Elasto-hydrodynamic Lubrication Analysis (탄성유체윤활해석에 의한 연료 펌프 저널베어링 최적간극 선정 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • The electric controlled marine diesel engine has fuel pump generating the high pressurized fuel for fuel injection to combustion chamber via a common rail. Fuel pump consists of a cam-roller system. Journal bearing installed between a roller and a cam-roller pin is subjected to fluctuating heavy and instant loads by cam lift. First, Kinematic analysis is carried out to predict bearing loads during one cycle acting on the journal bearing. Second, flexible multi-body dynamic analysis and transient elasto-hydrodynamic(EHD) lubrication analysis for journal bearing considering elastic deformation of cam-roller pin, roller and bearing are conducted using AVL EXCITE/PU software to predict lubrication performance. The clearance ratio and journal groove shape providing lubrication oil are important parameter in bearing design having good performance and can be changed easier than other design parameters such as diameter, width, oil supply pressure and bearing material grade. Generally, journal bearing performance is represented by the minimum oil film thickness(MOFT) and peak oil film pressure(POFP). As well as the traditional design parameters(MOFT, POFP), in this study, temperature rise of lubrication oil is also evaluated through the side leakage flow of supplied oil. By the evaluating MOFT, POFP and temperature rise, the optimum bearing clearance ratio is decided.

A Study on the Starved Lubrication for the Piston Ring (피스톤 링에서의 오일 부족 윤활에 대한 연구)

  • Jo, Myeong-Rae;Han, Dong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1183-1188
    • /
    • 2001
  • This paper reports on the starved lubrication for the piston ring. In this analysis, two types of inlet boundary conditions, fully flooded and starved condition, are considered at the leading edge. The inlet position of effective lubrication and squeeze term are obtained by numerically iterative method. The effective lubricated region is reduced due to the starved condition at the inlet. The starved condition at the inlet significantly reduced the minimum oil film thickness(MOFT) at the midstroke of piston, and the friction force is also increased due to the thin oil film thickness. In the starved conditions, the power loss is significantly increased.

Friction Power Loss Reduction for a Marine Diesel Engine Piston (박용엔진 피스톤 스커트 프로파일 변경에 의한 마찰손실(FMEP) 저감 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.132-139
    • /
    • 2016
  • The piston of a marine diesel engine works under severe conditions, including a combustion pressure of over 180 bar, high thermal load, and high speed. Therefore, the analyses of the fatigue strength, thermal load, clamping (bolting) system and lubrication performance are important in achieving a robust piston design. Designing the surface profile and the skirt ovality carefully is important to prevent severe wear and reduce frictional loss for engine efficiency. This study performs flexible multi-body dynamic and elasto-hydrodynamic (EHD) analyses using AVL/EXCITE/PU are performed to evaluate tribological characteristics. The numerical techniques employed to perform the EHD analysis are as follows: (1) averaged Reynolds equation considering the surface roughness; (2) Greenwood_Tripp model considering the solid_to_solid contact using the statistical values of the summit roughness; and (3) flow factor considering the surface topology. This study also compares two cases of skirt shapes with minimum oil film thickness, peak oil film pressure, asperity contact pressure, wear rate using the Archard model and friction power loss (i.e., frictional loss mean effective pressure (FMEP)). Accordingly, the study compares the calculated wear pattern with the field test result of the piston operating for 12,000h to verify the quantitative integrity of the numerical analysis. The results show that the selected profile and the piston skirt ovality reduce friction power loss and peak oil film pressure by 7% and 57%, respectively. They also increase the minimum oil film thickness by 34%.

Friction Characteristics of Piston Ring Pack with Consideration of Mixed Lubrication: Parametric Investigation

  • Kim, Ji-Young;Kim, Jee-Woon;Cho, Myung-Rae;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.468-475
    • /
    • 2002
  • This paper reports on the friction characteristics of a piston ring pack with consideration of mixed lubrication. The analytical model is presented by using the average flow antral asperity contact model. The effect of operating condition, and design parameters on the MOFT, maximum friction force, and mean frictional power loss are investigated. Piston ring prick shows mixed and hydrodynamic lubrication characteristics. From the predicted results, it was fand that the ring tension and height of surface roughness have great influence on the frictional power losses in a ring pack. Especially, ring tension is a dominant factor for the reduction of friction loss and maintenance of oil film thickness.