• Title/Summary/Keyword: minimum mass design

Search Result 107, Processing Time 0.021 seconds

Prediction of Rock Fragmentation and Design of Blasting Pattern based on 3-D Spatial Distribution of Rock Factor (발파암 계수의 3차원 공간 분포에 기초한 암석 파쇄도 예측 및 발파 패턴 설계)

  • Shim Hyun-Jin;Seo Jong-Seok;Ryu Dong-Woo
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.264-274
    • /
    • 2005
  • The optimum blasting pattern to excavate a quarry efficiently and economically can be determined based on the minimum production cost which is generally estimated according to rock fragmentation. Therefore it is a critical problem to predict fragment size distribution of blasted rocks over an entire quarry. By comparing various prediction models, it can be ascertained that the result obtained from Kuz-Ram model relatively coincides with that of field measurements. Kuz-Ram model uses the concept of rock factor to signify conditions of rock mass such as block size, rock jointing, strength and others. For the evaluation of total production cost, it is imperative to estimate 3-D spatial distribution of rock factor for the entire quarry. In this study, a sequential indicator simulation technique is adopted for estimation of spatial distribution of rock factor due to its higher reproducibility of spatial variability and distribution models than Kriging methods. Further, this can reduce the uncertainty of predictor using distribution information of sample data The entire quarry is classified into three types of rock mass and optimum blasting pattern is proposed for each type based on 3-D spatial distribution of rock factor. In addition, plane maps of rock factor distribution for each ground levels is provided to estimate production costs for each process and to make a plan for an optimum blasting pattern.

Optimum Design of Soil Nailing Excavation Wall System Using Genetic Algorithm and Neural Network Theory (유전자 알고리즘 및 인공신경망 이론을 이용한 쏘일네일링 굴착벽체 시스템의 최적설계)

  • 김홍택;황정순;박성원;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.113-132
    • /
    • 1999
  • Recently in Korea, application of the soil nailing is gradually extended to the sites of excavations and slopes having various ground conditions and field characteristics. Design of the soil nailing is generally carried out in two steps, The First step is to examine the minimum safety factor against a sliding of the reinforced nailed-soil mass based on the limit equilibrium approach, and the second step is to check the maximum displacement expected to occur at facing using the numerical analysis technique. However, design parameters related to the soil nailing system are so various that a reliable design method considering interrelationships between these design parameters is continuously necessary. Additionally, taking into account the anisotropic characteristics of in-situ grounds, disturbances in collecting the soil samples and errors in measurements, a systematic analysis of the field measurement data as well as a rational technique of the optimum design is required to improve with respect to economical efficiency. As a part of these purposes, in the present study, a procedure for the optimum design of a soil nailing excavation wall system is proposed. Focusing on a minimization of the expenses in construction, the optimum design procedure is formulated based on the genetic algorithm. Neural network theory is further adopted in predicting the maximum horizontal displacement at a shotcrete facing. Using the proposed procedure, various effects of relevant design parameters are also analyzed. Finally, an optimized design section is compared with the existing design section at the excavation site being constructed, in order to verify a validity of the proposed procedure.

  • PDF

Improving on Planting in Small Scale Development - The Case of Seoul - (소규모 대지의 조경 개선방안에 관한 연구 - 서울시를 사례로 -)

  • Cho, Yong-Hyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.5
    • /
    • pp.31-41
    • /
    • 2009
  • Under the Korea Building Act, anyone planning to build a building or buildings on a site over $200m^2$ must plant plants over a specific area. In large scale development this rule is adhered to well, but such is not the case in small scale development. Therefore, special attention must be given to small scale development. Thus, the purpose of this research is to analyze the current situation and practice of planting at small scale development sites in Seoul, and then suggest policies for improving them. In this study using the data covering Seongbuk-Gu and Gangnam-Gu, which was surveyed in 2002, the current situation and practice of planting at small scale development sites was analyzed. After a questionnaire survey was conducted with government officers and building owners, the same analysis was made. Then the policies for improvement were extracted. The results are as follows: 1. In superordinate planning stage, because the minimum standards are too low, those must be strengthened. Any district plan does not control planting in private building lots. This requests active application of planting in private building lots as a design control measure in district planning. 2. In the building design stage, there are no guidelines. The obligation of building set-back between adjacent buildings by the Korean Building Act produces mass shaded and inferior planting beds. The act also is blocking landscape architects' participation in small scale development. And wall installations deteriorate the streetscape and growth of plants with shading. Therefore guidelines must be made. 3. In each stage of the building permit, the permit for building completion, and maintenance the Korean Building Act is blocking landscape architects' participation in small scale development, so the planting plan is completely handled by nonprofessional persons. Therefore, the act should be amended in order to make way for landscape architects' participation in each stage of the small scale development process.

Study for Clean Energy Farming System by Mass and Energy Balance Analysis in the Controlled Cultivation of Vegetable Crop (Cucumber) (물질 및 에너지 수지 분석을 통한 시설채소(오이)의 청정에너지 농업 시스템 구축을 위한 기초 연구)

  • Shin, Kook-Sik;Kim, Seung-Hwan;Oh, Seong-Yong;Lee, Sang-En;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.280-286
    • /
    • 2012
  • Clean energy farming is the agricultural activity to improve an efficiency of agricultural energy use and to replace fossil fuels. This study was carried out to establish the clean energy farming system in the controlled cultivation of vegetable crop (cucumber) adopting the biogas production facility. In order to design the clean energy farming system, mass and energy balance was analyzed between the controlled cultivation system and the biogas production facility. Net yearly heating energy demands ($E_{YHED}$) of forcing and semi-forcing cultivation types were 48,697 and $13.536Mcal\;10^{-1}$ in the controlled cultivation of vegetable cucumber. To cover these $E_{YHED}$, the pig slurry of 511 and $142m^3\;10a^{-1}$ (biogas volume of 9,482 and $2,636Nm^3\;10a^{-1}$, respectively, as 60% methane content) were needed in forcing and semi-forcing cultivation types. The pig slurry of $511m^3\;10a^{-1}$ caused N 1,788, $P_2O_5$ $511kg\;10a^{-1}$ in the forcing cultivation type, and the pig slurry of $142m^3\;10a^{-1}$ caused N 497, $P_2O_5$ $142kg\;10a^{-1}$ in the semi-forcing cultivation type. The daily heating energy demand ($E_{i,DHED}$) by the time scale analysis showed the minimum $E_{i,DHED}$ of $7.7Mcal\;10a^{-1}\;day^{-1}$, the maximum $E_{i,DHED}$ of $515.1Mcal\;10a^{-1}\;day^{-1}$, and the mean $E_{i,DHED}$ of 310.2 in the forcing cultivation type. And the minimum $E_{i,DHED}$, the maximum $E_{i,DHED}$, and the mean $E_{i,DHED}$ were 5.3, 258.0, and $165.1Mcal\;10a^{-1}\;day^{-1}$ in the semi-forcing cultivation type, respectively. Input scale of biogas production facility designed from the mean $E_{i,DHED}$ were 3.3 and $1.7m^3\;day^{-1}$ in the forcing and the semi-forcing cultivation type. The maximum $E_{i,DHED}$ gave the input scale of 5.4 and $2.7m^3\;day^{-1}$ in the forcing and the semi-forcing cultivation type.

The Stability Analysis of Near Parallel Tunnels Pillar at Multi-layered Soil with Shallow Depth by Numerical Analysis (수치해석에 의한 저토피 다층지반에서 근접 병설터널 필라의 안정성 분석)

  • Lim, Hyungmin;Son, Kwangrok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.53-62
    • /
    • 2014
  • In Korea, in general, separation distance between existing parallel tunnels was set at two to five times as distant as the diameter of the tunnels according to ground conditions. Recently, however, actual applicability of closely spaced parallel tunnels whose distance between tunnel centers was shorter than the diameter has increased due to environmental damages resulting from massive cutting, restriction in purchase of required land, and maintenance of linear continuity. In particular, when the pillar width of tunnel decreases, the safety of pillars affects behaviors of the tunnel and therefore the need for diverse relevant studies has emerged. However, research so far has been largely confined to analysis of behavior characteristics of pillars, or parameters affecting design, and actually applicable and quantitative data have not been presented. Accordingly, in order to present a stability evaluation method which may maximally reflect construction conditions of spots, this study reflected topographical and stratigraphic characteristics of the portal part with the highest closeness between the tunnels, simulated multi-layer conditions with rock mass and complete weathering, and assessed the degree of effect the stability of pillars had on the entire tunnels through numerical analysis according to changes in pillar width by ground strength. This study also presented composite analysis result on ground surface settlement rates, interference volume rates, and average strength to stress and a formula, which may be applicable to actual work, to evaluate safety rates of closely spaced parallel tunnel pillars and minimum pillar width by ground strength based on failure criteria by Hoek-Brown (1980).

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안전성해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.183-193
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal fetid. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about $60^{\circ}$in the northern part and $83^{\circ}$in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9 MPa and that of weak sandstone was 10 MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north(east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30~$36^{\circ}$for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described abode. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures. the stability of 니ope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안정성 해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.430-440
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal field. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about 60$^{\circ}$ in the northern part and 83$^{\circ}$ in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9MPa and that of weak sandstone was 10MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north (east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30∼36$^{\circ}$ for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described above. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures, the stability of slope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF