• Title/Summary/Keyword: minimum energy routing

Search Result 58, Processing Time 0.025 seconds

Energy Efficient Wireless Sensor Networks Using Linear-Programming Optimization of the Communication Schedule

  • Tabus, Vlad;Moltchanov, Dmitri;Koucheryavy, Yevgeni;Tabus, Ioan;Astola, Jaakko
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.184-197
    • /
    • 2015
  • This paper builds on a recent method, chain routing with even energy consumption (CREEC), for designing a wireless sensor network with chain topology and for scheduling the communication to ensure even average energy consumption in the network. In here a new suboptimal design is proposed and compared with the CREEC design. The chain topology in CREEC is reconfigured after each group of n converge-casts with the goal of making the energy consumption along the new paths between the nodes in the chain as even as possible. The new method described in this paper designs a single near-optimal Hamiltonian circuit, used to obtain multiple chains having only the terminal nodes different at different converge-casts. The advantage of the new scheme is that for the whole life of the network most of the communication takes place between same pairs of nodes, therefore keeping topology reconfigurations at a minimum. The optimal scheduling of the communication between the network and base station in order to maximize network lifetime, given the chosen minimum length circuit, becomes a simple linear programming problem which needs to be solved only once, at the initialization stage. The maximum lifetime obtained when using any combination of chains is shown to be upper bounded by the solution of a suitable linear programming problem. The upper bounds show that the proposed method provides near-optimal solutions for several wireless sensor network parameter sets.

A Novel Opportunistic Greedy Forwarding Scheme in Wireless Sensor Networks

  • Bae, Dong-Ju;Choi, Wook;Kwon, Jang-Woo;Choo, Hyun-Seung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.753-775
    • /
    • 2010
  • Greedy forwarding is a key mechanism of geographic routing using distance as a metric. As greedy forwarding only uses 1-hop neighbor node information, it minimizes routing overhead and is highly scalable. In existing greedy forwarding schemes, a node selects a next forwarding node based only on the distance. However, the signal strength in a realistic environment reduces exponentially depending on the distance, so that by considering only the distance, it may cause a large number of data packet retransmissions. To solve this problem, many greedy forwarding schemes have been proposed. However, they do not consider the unreliable and asymmetric characteristics of wireless links and thus cause the waste of limited battery resources due to the data packet retransmissions. In this paper, we propose a reliable and energy-efficient opportunistic greedy forwarding scheme for unreliable and asymmetric links (GF-UAL). In order to further improve the energy efficiency, GF-UAL opportunistically uses the path that is expected to have the minimum energy consumption among the 1-hop and 2-hop forwarding paths within the radio range. Comprehensive simulation results show that the packet delivery rate and energy efficiency increase up to about 17% and 18%, respectively, compared with the ones in PRR${\times}$Distance greedy forwarding.

Reducing Transmit Power and Extending Network Lifetime via User Cooperation in the Next Generation Wireless Multihop Networks

  • Catovic, Amer;Tekinay, Sirin;Otsu, Toru
    • Journal of Communications and Networks
    • /
    • v.4 no.4
    • /
    • pp.351-362
    • /
    • 2002
  • In this paper, we introduce a new approach to the minimum energy routing (MER) for next generation (NG) multihop wireless networks. We remove the widely used assumption of deterministic, distance-based channel model is removed, and analyze the potentials of MER within the context of the realistic channel model, accounting for shadowing and fading. Rather than adopting the conventional unrealistic assumption of perfect power control in a distributed multihop environment, we propose to exploit inherent spatial diversity of mobile terminals (MT) in NG multihop networks and to combat fading using transmit diversity. We propose the cooperation among MTs, whereby couples of MTs cooperate with each other in order to transmit the signal using two MTs as two transmit antennas. We provide the analytical framework for the performance analysis of this scheme in terms of the feasibility and achievable transmit power reduction. Our simulation result indicate that significant gains can be achieved in terms of the reduction of total transmit power and extension of network lifetime. These gains are in the range of 20-100% for the total transmit power, and 25-90% for the network lifetime, depending on the desired error probability. We show that our analytical results provide excellent match with our simulation results. The messaging load generated by our scheme is moderate, and can be further optimized. Our approach opens the way to a new family of channel-aware routing schemes for multihopNG wireless networks in fading channels. It is particularly suitable for delivering multicast/ geocast services in these networks.

Spatial Query Processing Based on Minimum Bounding in Wireless Sensor Networks

  • Yang, Sun-Ok;Kim, Sung-Suk
    • Journal of Information Processing Systems
    • /
    • v.5 no.4
    • /
    • pp.229-236
    • /
    • 2009
  • Sensors are deployed to gather physical, environmental data in sensor networks. Depending on scenarios, it is often assumed that it is difficult for batteries to be recharged or exchanged in sensors. Thus, sensors should be able to process users' queries in an energy-efficient manner. This paper proposes a spatial query processing scheme- Minimum Bounding Area Based Scheme. This scheme has a purpose to decrease the number of outgoing messages during query processing. To do that, each sensor has to maintain some partial information locally about the locations of descendent nodes. In the initial setup phase, the routing path is established. Each child node delivers to its parent node the location information including itself and all of its descendent nodes. A parent node has to maintain several minimum bounding boxes per child node. This scheme can reduce unnecessary message propagations for query processing. Finally, the experimental results show the effectiveness of the proposed scheme.

Clustering Ad hoc Network Scheme and Classifications Based on Context-aware

  • Mun, Chang-Min;Lee, Kang-Whan
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.475-479
    • /
    • 2009
  • In ad hoc network, the scarce energy management of the mobile devices has become a critical issue in order to extend the network lifetime. Current research activity for the Minimum Energy Multicast (MEM) problem has been focused on devising efficient centralized greedy algorithms for static ad hoc networks. In this paper, we consider mobile ad hoc networks(MANETs) that could provide the reliable monitoring and control of a variety of environments for remote place. Mobility of MANET would require the topology change frequently compared with a static network. To improve the routing protocol in MANET, energy efficient routing protocol would be required as well as considering the mobility would be needed. In this paper, we propose a new method, the CACH(Context-aware Clustering Hierarchy) algorithm, a hybrid and clustering-based protocol that could analyze the link cost from a source node to a destination node. The proposed analysis could help in defining the optimum depth of hierarchy architecture CACH utilize. The proposed CACH could use localized condition to enable adaptation and robustness for dynamic network topology protocol and this provide that our hierarchy to be resilient. As a result, our simulation results would show that CACH could find energy efficient depth of hierarchy of a cluster.

Energy-efficient Positioning of Cluster Heads in Wireless Sensor Networks

  • Sohn, Surg-Won;Han, Kwang-Rok
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.71-76
    • /
    • 2009
  • As one of the most important requirements for wireless sensor networks, prolonging network lifetime can be realized by minimizing energy consumption in cluster heads as well as sensor nodes. While most of the previous researches have focused on the energy of sensor nodes, we devote our attention to cluster heads because they are most dominant source of power consumption in the cluster-based sensor networks. Therefore, we seek to minimize energy consumption by minimizing the maximum(MINMAX) energy dissipation at each cluster heads. This work requires energy-efficient clustering of the sensor nodes while satisfying given energy constraints. In this paper, we present a constraint satisfaction modeling of cluster-based routing in a heterogeneous sensor networks because mixed integer programming cannot provide solutions to this MINMAX problem. Computational experiments show that substantial energy savings can be obtained with the MINMAX algorithm in comparison with a minimum total energy(MTE) strategy.

  • PDF

A Fault-Tolerant QoS Routing Scheme based on Interference Awareness for Wireless Sensor Networks (무선 센서 네트워크를 위한 간섭 인지 기반의 결함 허용 QoS 라우팅 기법)

  • Kim, Hyun-Tae;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.148-153
    • /
    • 2012
  • In this paper, we propose a fault-tolerant QoS routing scheme based on interference awareness for providing both high throughput and minimum end-to-end delay for wireless sensor networks. With the proposed algorithm, it is feasible to find out the optimal transmission path between sensor nodes to the sink node by using cumulative path metric where real-time delivery, high energy efficiency and less interference are considered as in path selection. Finally, simulation results show that network throughput and delay can be improved by using the proposed routing scheme.

A Branch and Bound Algorithm to Find a Routing Tree Having Minimum Wiener Index in Sensor Networks with High Mobile Base Node (베이스 노드의 이동성이 큰 센서 네트워크 환경에서 최소 Wiener 수를 갖는 라우팅 트리를 위한 분기한정 알고리즘)

  • Kang, Seung-Ho;Kim, Ki-Young;Lee, Woo-Young;Song, Iick-Ho;Jung, Min-A;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.466-473
    • /
    • 2010
  • Several protocols which are based on tree topology to guarantee the important metrics such as energy efficiency in sensor networks have been proposed. However, studies on the effect of topologies in sensor networks, where base node has a high mobility, are very few. In this paper, we propose a minimum Wiener index tree as a suitable topology to the wireless sensor networks with high mobile base node. The minimum Wiener index spanning tree problem which aims to find a tree with minimum Wiener index from a given weighted graph was proved to be NP-hard. We designed a branch and bound algorithm for this problem. To evaluate the performance of proposed tree, the comparisons with minimum spanning tree in terms of transmission distance, energy consumption during one round, and network lifetime was performed by simulations. Our proposed tree outperformed in transmission distance and energy efficiency but underperformed in lifetime.

An Optimization Algorithm for Minimum Connected Dominating Set Problem in Wireless Sensor Network

  • Ahn, Nam-Su;Park, Sung-Soo
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.3
    • /
    • pp.221-231
    • /
    • 2011
  • One of the critical issues in wireless sensor network is the design of a proper routing protocol. One possible approach is utilizing a virtual infrastructure, which is a subset of sensors to connect all the sensors in the network. Among the many virtual infrastructures, the connected dominating set is widely used. Since a small connected dominating set can help to decrease the protocol overhead and energy consumption, it is preferable to find a small sized connected dominating set. Although many algorithms have been suggested to construct a minimum connected dominating set, there have been few exact approaches. In this paper, we suggest an improved optimal algorithm for the minimum connected dominating set problem, and extensive computational results showed that our algorithm outperformed the previous exact algorithms. Also, we suggest a new heuristic algorithm to find the connected dominating set and computational results show that our algorithm is capable of finding good quality solutions quite fast.

Data Aggregation Method Guaranteeing Minimum Traffic in Multi-hop Automatic Meter Reading Networks (다중 홉 원격검침망에서의 최소 트래픽 보장을 위한 데이터 수집기법에 관한 연구)

  • Hwang, Kwang-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.848-857
    • /
    • 2011
  • Due to the advantages of a conveniet, inexpensive installation, flexibility, and scalability, Wireless AMR systems are recently preferred over wired AMR systems. However, a multi-hop supported AMR network, which generally covers large areas, may create energy wastage problem, energy unbalance, and high interference hazard due to a large amount of concurrent-intensive metering data in the network. Therefore in this paper we propose a novel data gathering method which can solve abovementioned problems as well as conserve energy, by reducing the traffic in the network. In addition, the experimental results demonstrate that the proposed scheme shows superior performance to the conventional data transmission method.