• Title/Summary/Keyword: minimum energy input

Search Result 80, Processing Time 0.029 seconds

The effect on the seasonal performance of an inverter compressor with higher and lower operating range (인버터 압축기의 저속과 고속운전범위가 계절성능에 미치는 영향)

  • 박윤철;하도용;민만기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.173-179
    • /
    • 1998
  • An experimental study was conducted on the effect of compressor capacity control range of heat pump on the seasonal energy efficiency ratio with variation of the maximum and minimum compressor input frequencies. To obtain seasonal energy efficiency ratio, steady state test at the maximum, minimum and intermediate compressor speed and cyclic test at the minimum compressor speed should be conducted. Maximum input frequency was varied to 95Hz, 105Hz, and 115Hz, and the minimum input frequency was varied to 35Hz, 45Hz, and 55Hz. The seasonal energy efficiency ratio increased as the input frequency of the compressor decreased. The maximum input frequency had only slight effects on the SEER.

  • PDF

A 3-Step Speed Control for Minimizing Energy Consumption for Battery-Powered Wheeled Mobile Robots (배터리로 구동되는 이동 로봇의 에너지 소모 최소화를 위한 3-구간 속도 제어)

  • Kim Byung-Kook;Kim Chong-Hui
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.208-220
    • /
    • 2006
  • Energy of wheeled mobile robot is usually supplied by batteries. In order to extend operation time of mobile robots, it is necessary to minimize the energy consumption. The energy is dissipated mostly in the motors, which strongly depends on the velocity profile. This paper investigates various 3-step (acceleration - cruise - deceleration) speed control methods to minimize a new energy object function which considers the practical energy consumption dissipated in motors related to motor control input, velocity profile, and motor dynamics. We performed an analysis on the energy consumption various velocity profile patterns generated by standard control input such as step input, ramp input, parabolic input, and exponential input. Based on these standard control inputs, we analyzed the six 3-step velocity profile patterns: E-C-E, P-C-P, R-C-R, S-C-S, R-C-S, and S-C-R (S means a step control input, R means a ramp control input, P means a parabolic control input, and E means an exponential control input, C means a constant cruise velocity), and suggested an efficient iterative search algorithm with binary search which can find the numerical solution quickly. We performed various computer simulations to show the performance of the energy-optimal 3-step speed control in comparison with a conventional 3-step speed control with a reasonable constant acceleration as a benchmark. Simulation results show that the E-C-E is the most energy efficient 3-step velocity profile pattern, which enables wheeled mobile robot to extend working time up to 50%.

An Input-Powered High-Efficiency Interface Circuit with Zero Standby Power in Energy Harvesting Systems

  • Li, Yani;Zhu, Zhangming;Yang, Yintang;Zhang, Chaolin
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1131-1138
    • /
    • 2015
  • This study presents an input-powered high-efficiency interface circuit for energy harvesting systems, and introduces a zero standby power design to reduce power consumption significantly while removing the external power supply. This interface circuit is composed of two stages. The first stage voltage doubler uses a positive feedback control loop to improve considerably the conversion speed and efficiency, and boost the output voltage. The second stage active diode adopts a common-grid operational amplifier (op-amp) to remove the influence of offset voltage in the traditional comparator, which eliminates leakage current and broadens bandwidth with low power consumption. The system supplies itself with the harvested energy, which enables it to enter the zero standby mode near the zero crossing points of the input current. Thereafter, high system efficiency and stability are achieved, which saves power consumption. The validity and feasibility of this design is verified by the simulation results based on the 65 nm CMOS process. The minimum input voltage is down to 0.3 V, the maximum voltage efficiency is 99.6% with a DC output current of 75.6 μA, the maximum power efficiency is 98.2% with a DC output current of 40.4 μA, and the maximum output power is 60.48 μW. The power loss of the entire interface circuit is only 18.65 μW, among which, the op-amp consumes only 2.65 μW.

Simulation study on one-step ahead control of a photovoltaic energy storage system

  • Sugisaka, Masanori;Kuroiwa, Kenzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.741-746
    • /
    • 1987
  • Solar cell which transforms the light energy into the electric energy from Sun comes into prominence as a new energy for next generation. However, it is difficult to obtain the stable output voltage and current from the solar cell due to the uncertainty in weather conditions, etc, In the present paper, two types of control laws are considered for regulating the input voltage in a photovoltaic energy storage system such as the system with the super conducting magnetic energy storage. (1) Oone is the design of optimal controller. (2) The other is that of weighted minimum prediction error controllers (weighted one-step ahead controllers). Simulation study for the above controllers is performed to see how they work and to get preliminary knowledge in the regulation of the input voltage to the experimental photovoltaic energy storage system.

  • PDF

Energy-Efficiency and Transmission Strategy Selection in Cooperative Wireless Sensor Networks

  • Zhang, Yanbing;Dai, Huaiyu
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.473-481
    • /
    • 2007
  • Energy efficiency is one of the most critical concerns for wireless sensor networks. By allowing sensor nodes in close proximity to cooperate in transmission to form a virtual multiple-input multiple-output(MIMO) system, recent progress in wireless MIMO communications can be exploited to boost the system throughput, or equivalently reduce the energy consumption for the same throughput and BER target. However, these cooperative transmission strategies may incur additional energy cost and system overhead. In this paper, assuming that data collectors are equipped with antenna arrays and superior processing capability, energy efficiency of relevant traditional and cooperative transmission strategies: Single-input-multiple-output(SIMO), space-time block coding(STBC), and spatial multiplexing(SM) are studied. Analysis in the wideband regime reveals that, while receive diversity introduces significant improvement in both energy efficiency and spectral efficiency, further improvement due to the transmit diversity of STBC is limited, as opposed to the superiority of the SM scheme especially for non-trivial spectral efficiency. These observations are further confirmed in our analysis of more realistic systems with limited bandwidth, finite constellation sizes, and a target error rate. Based on this analysis, general guidelines are presented for optimal transmission strategy selection in system level and link level, aiming at minimum energy consumption while meeting different requirements. The proposed selection rules, especially those based on system-level metrics, are easy to implement for sensor applications. The framework provided here may also be readily extended to other scenarios or applications.

Energy efficient joint iterative SIC-MMSE MIMO detection (에너지 효율적 반복 SIC-MMSE MIMO 검출)

  • Ngayahala, F.C. Kamaha;Ahmed, Saleem;Kim, Sooyoung
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.1
    • /
    • pp.22-28
    • /
    • 2015
  • In this paper, we propose a new computationally efficient joint iterative multi-input multi-output (MIMO) detection scheme using a soft interference cancellation and minimum mean squared-error (SIC-MMSE) method. The critical computational burden of the SIC-MMSE scheme lies in the multiple inverse operations of the complex matrices. We find a new way which requires only a single matrix inversion by utilizing the Taylor series expansion of the matrix, and thus the computational complexity can be reduced. The computational complexity reduction increases as the number of antennas is increased. The simulation results show that our method produces almost the same performances as the conventional SIC-MMSE with reduced computational complexity.

Initiation of Gaseous Premixed Flame (예혼합기체 연료의 화염생성에 관한 연구)

  • 백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.135-139
    • /
    • 1989
  • The flame initiation of an infinite fuel system exposed to a planar ignition kernel has been investigated numerically. The aim has been to promote an understanding of the flame initiation by using the simplest mathematical formulation which retains the essential physical features. It has been found that there exists a minimum ignition energy below which a combustion wave cannot be initiated. For a fixed value of Lewis number, the same flame progation velocity has been obtained irregardless of the amount ignition energy supplied. Furthermore, for a fixed energy input there is a maximum Lewis number over which the flame cannot be initiated.

A Basic Study on the Conversion of Sound into Color Image using both Pitch and Energy

  • Kim, Sung-Ill
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.101-107
    • /
    • 2012
  • This study describes a proposed method of converting an input sound signal into a color image by emulating human synesthetic skills which make it possible to associate an sound source with a specific color image. As a first step of sound-to-image conversion, features such as fundamental frequency(F0) and energy are extracted from an input sound source. Then, a musical scale and an octave can be calculated from F0 signals, so that scale, energy and octave can be converted into three elements of HSI model such hue, saturation and intensity, respectively. Finally, a color image with the BMP file format is created as an output of the process of the HSI-to-RGB conversion. We built a basic system on the basis of the proposed method using a standard C-programming. The simulation results revealed that output color images with the BMP file format created from input sound sources have diverse hues corresponding to the change of the F0 signals, where the hue elements have different intensities depending on octaves with the minimum frequency of 20Hz. Furthermore, output images also have various levels of chroma(or saturation) which is directly converted from the energy.

Energy-Efficient Opportunistic Interference Alignment With MMSE Receiver

  • Shin, Won-Yong;Yoon, Jangho
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.83-87
    • /
    • 2014
  • This paper introduces a refined opportunistic interference alignment (OIA) technique that uses minimum mean square error (MMSE) detection at the receivers in multiple-input multiple-output multi-cell uplink networks. In the OIA scheme under consideration, each user performs the optimal transmit beamforming and power control to minimize the level of interference generated to the other-cell base stations, as in the conventional energy-efficient OIA. The result showed that owing to the enhanced receiver structure, the OIA scheme shows much higher sum-rates than those of the conventional OIA with zero-forcing detection for all signal-to-noise ratio regions.

Performance of Compressor with Variable Capacity (용량가변 방식을 적용한 압축기의 성능연구)

  • 권영철;진의선;허삼행;김대훈;홍주태;문제명
    • Journal of Energy Engineering
    • /
    • v.13 no.3
    • /
    • pp.214-218
    • /
    • 2004
  • In the present study, the variation of input power and efficiency improvement of a scroll compressor applying PWM method are experimentally investigated. The cooling capacity, input power and COP are measured under the cooling operation. The input power due to the change of the condenser and the coil addition in a main current part is measured to enhance the compressor efficiency. Measured results show that the input power and COP increase with increasing the tooling capacity. And the minimum input power of the compressor is observed. By the adoption of the double system, the consumption of compressor input power is reduced, compared with the existing system.