Communications for Statistical Applications and Methods
/
v.16
no.6
/
pp.989-995
/
2009
Basu et al. (1998) proposed the minimum divergence estimating method which is free from using the painful kernel density estimator. Their proposed class of density power divergences is indexed by a single parameter $\alpha$ which controls the trade-off between robustness and efficiency. In this article, (1) we introduce a new large class the minimum squared distance which includes from the minimum Hellinger distance to the minimum $L_2$ distance. We also show that under certain conditions both the minimum density power divergence estimator(MDPDE) and the minimum squared distance estimator(MSDE) are asymptotically equivalent and (2) in finite samples the MDPDE performs better than the MSDE in general but there are some cases where the MSDE performs better than the MDPDE when estimating a location parameter or a proportion of mixed distributions.
Communications for Statistical Applications and Methods
/
v.20
no.4
/
pp.311-319
/
2013
Cooray and Ananda (2005) proposed a composite lognormal-Pareto model to analyze loss payment data in the actuarial and insurance industries. Their model is based on a lognormal density up to an unknown threshold value and a two-parameter Pareto density. In this paper, we implement the minimum density power divergence estimation for the composite lognormal-Pareto density. We compare the performances of the minimum density power divergence estimator (MDPDE) and the maximum likelihood estimator (MLE) by simulations and an example. The minimum density power divergence estimator performs reasonably well against various violations in the distribution. The minimum density power divergence estimator better fits small observations and better resists against extraordinary large observations than the maximum likelihood estimator.
It is often the case that one wants to estimate parameters of the distribution which follows certain parametric model, while the dta are contaminated. it is well known that the maximum likelihood estimators are not robust to contamination. Basuet al.(1998) proposed a robust method called the minimum density power divergence estimation. In this paper, we investigate data-driven selection of the tuning parameter $\alpha$ in the minimum density power divergence estimation. A criterion is proposed and its performance is studied through the simulation. The simulation includes three cases of estimation problem.
The minimum density power divergence estimation has been a popular topic in the field of robust estimation for since Basu et al. (1988). The minimum density power divergence estimator has strong robustness properties with the little loss in asymptotic efficiency relative to the maximum likelihood estimator under model conditions. However, a limitation in applying this estimation method is the algebraic difficulty on an integral involved in an estimation function. This paper considers a minimum density power divergence estimation method with approximated divergence avoiding such difficulty. As an example, we consider the normal-exponential convolution model introduced by Bolstad (2004). The estimated divergence in this case is too complicated; consequently, a Laplace approximation is employed to obtain a manageable form. Simulations and an empirical study show that the minimum density power divergence estimators based on an approximated estimated divergence for the normal-exponential model perform adequately in terms of bias and efficiency.
Communications for Statistical Applications and Methods
/
v.14
no.2
/
pp.267-280
/
2007
In this paper, we consider the robust estimation for diffusion processes when the sample is observed discretely. As a robust estimator, we consider the minimizing density power divergence estimator (MDPDE) proposed by Basu et al. (1998). It is shown that the MDPDE for diffusion process is weakly consistent. A simulation study demonstrates the robustness of the MDPDE.
Journal of the Korean Data and Information Science Society
/
v.16
no.4
/
pp.1159-1165
/
2005
Basu et al. (1998) proposed a new density-based estimator, called the minimum density power divergence estimator (MDPDE), which avoid the use of nonparametric density estimation and associated complication such as bandwidth selection. Woodward et al. (1995) examined the minimum Hellinger distance estimator (MHDE), proposed by Beran (1977), in the case of estimation of the mixture proportion in the mixture of two normals. In this article, we introduce the MDPDE for a mixture proportion, and show that both the MDPDE and the MHDE have the same asymptotic distribution at a model. Simulation study identifies some cases where the MHDE is consistently better than the MDPDE in terms of bias.
Journal of the Korean Data and Information Science Society
/
v.14
no.3
/
pp.687-696
/
2003
This article presents a new family of the estimating functions related with minimum distance estimations, and discusses its relationship to the family of the minimum density power divergence estimating equations. Two representative minimum distance estimations; the minimum $L_2$ distance estimation and the minimum Hellinger distance estimation are studied in the light of the theory of estimating equations. Despite of the desirable properties of minimum distance estimations, they are not widely used by general researchers, because theories related with them are complex and are hard to be computationally implemented in real problems. Hopefully, this article would be a help for understanding the minimum distance estimations better.
Richard Minkah;Tertius de Wet;Abhik Ghosh;Haitham M. Yousof
Communications for Statistical Applications and Methods
/
v.30
no.6
/
pp.531-550
/
2023
The estimation of extreme quantiles is one of the main objectives of statistics of extremes (which deals with the estimation of rare events). In this paper, a robust estimator of extreme quantile of a heavy-tailed distribution is considered. The estimator is obtained through the minimum density power divergence criterion on an exponential regression model. The proposed estimator was compared with two estimators of extreme quantiles in the literature in a simulation study. The results show that the proposed estimator is stable to the choice of the number of top order statistics and show lesser bias and mean square error compared to the existing extreme quantile estimators. Practical application of the proposed estimator is illustrated with data from the pedochemical and insurance industries.
Journal of the Korean Data and Information Science Society
/
v.26
no.6
/
pp.1565-1572
/
2015
In this paper, we analyze the polio incidence data based on the Poisson autoregressive models, focusing particularly on change-point detection. Since the data include some strongly deviating observations, we employ the robust cumulative sum (CUSUM) test proposed by Kang and Song (2015) to perform the test for parameter change. Contrary to the result of Kang and Lee (2014), our data analysis indicates that there is no significant change in the case of the CUSUM test with strong robustness and the same result is obtained after ridding the polio data of outliers. We additionally consider the comparison of the forecasting performance. All the results demonstrate that the robust CUSUM test performs adequately in the presence of seemingly outliers.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.319-319
/
2018
최근 전 세계적으로 극한수문사상의 증가로 인한 피해의 규모와 빈도가 잦아지고 있다. 기후변화에 관한 정부 간 협의체(IPCC)5차 보고서에 따르면 우리나라는 모든 시나리오 하에서 평균 강수량이 증가하는 지역으로 분류되었다. 특히 강우와 태풍피해가 잦은 7월에서 9월의 강우량이 급격히 증가하는 것으로 나타나며 이는 현재보다 극한수문사상이 더욱 빈번하게 일어날 것이라 예상할 수 있다. 하지만 기존의 매개변수 추정방법은 이상치 산정기준을 넘어서는 극치를 제외하고 확률강우량을 산정하고 있는 실정이다. 따라서 본 연구에서는 이러한 기존의 매개변수 추정방법 보다 극한값에 강건한 MDPDE(minimum density power divergence estimator)를 이용한 매개변수 추정을 사용하여 우리나라 60개 강우관측소의 과거 강우관측자료에 대한 최적조율모수에 대한 빈도별 확률강우량을 추정하여 기존의 방법으로 산정한 확률강우량과 비교하였다. 이상치로 분류할 수 있는 극한수문사상이 발생한 우리나라 31개소에 대하여 MDPDE의 적용성을 검토한 결과 기존의 매개변수 추정방법에 비해 이상치를 포함한 100년 빈도 확률강우량이 약13.3% 감소하는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.