• Title/Summary/Keyword: minimum coupling loss (MCL) method

Search Result 14, Processing Time 0.018 seconds

An Advanced MCL Method for a Sharing Analysis of Mobile Communication Systems beyond 3G (차세대 이동통신 시스템의 주파수 공유분석을 위한 개선된 MCL 방법)

  • Chung Woo-Ghee;Yoon Hyun-Goo;Jo Han-Shin;Lim Jae-Woo;Yook Jong-Gwan;Park Han-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.307-316
    • /
    • 2006
  • In this paper the analytical method, namely advanced minimum coupling loss(A-MCL), was proposed in order to analyze the coexistence of OFDM-based systems beyond 3G(B3G) with point-to point(PP) fixed service(FS) microwave systems. Our proposed method is based on a power spectral density(PSD) analysis. So it can be easily applicable to analyze the coexistence of OFDM-based systems B3G using flexible spectrum usage(FSU) with other systems, where the conventional MCL method cannot allocate transmit power partially to some subcarriers which overlap the band of a victim system. By applying the conventional MCL method and the A-MCL method, interfering power levels at the receiver of a interfered system are respectively calculated. A-MCL can calculate interference power more accurately than MCL by the maximum value of 4.5 dB. Therefore it can be concluded that our prosed method, namely A-MCL, is applicable to a sharing analysis of OFDM-based systems B3G.

Analysis of Radio Interference through Ducting for 2.5 GHz WiMAX Service

  • Son, Ho-Kyung;Kim, Jong-Ho;Kim, Che-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.94-100
    • /
    • 2012
  • Radio interference has been occurring in mobile communication services on the southern seashore in Korea. Monitoring the radio interference signal revealed that the main reason for the radio interference was a radio ducting signal coming from the seaside of Japan. In this paper, we have analyzed the effect of interference on WiMAX service using a 2.5 GHz frequency band between Korea and Japan. We focus on the interference scenario from base station to base station and we use the Minimum Coupling Loss (MCL) method for interference analysis and the Advanced Propagation Model (APM) for calculating the propagation loss in ducts. The propagation model is also compared with experimental measurement data. We confirm that the interfering signal strength depends on the antenna height and this result can be applied to deployment planning for each system with an interference impact acceptable to both parties.

Analysis on Coexistence between Unlicensed Wireless Device based on 802.11ah and LTE User Equipment (802.11ah 기반 비면허 무선기기와 LTE 단말기 간 공존 분석)

  • Lee, Il-Kyoo;Park, Yeon-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2015-2021
    • /
    • 2017
  • Recently, a lot of attention is fallen to IoT(Internet of Things) for hyper-connected society and the number of unlicensed wireless device has been increasing. Thus, this paper analyzed the impact of unlicensed wireless device on the basis of 802.11ah on licensed LTE user equipment in 900 MHz frequency band for efficient frequency use. As the interference analysis method, Minimum Coupling Loss (MCL) method and Monte Carlo (MC) method were used. In case of one interferer, minimum separation distance between interferer and victim was calculated as about 22 m through the MCL method under the assumption of the worst case. The maximum number of interferer to meet the interference probability of 5% below within a cell radius of the victim was computed as about 3000 by using MC method based on statistical technique. The analysis method and results in this paper are expected to be used for the coexistence between unlicensed wireless device and licensed wireless device.

The Coexistence of OFDM-Based Systems Beyond 3G with Fixed Service Microwave Systems

  • Jo Han-Shin;Yoon Hyun-Goo;Lim Jae-Woo;Chung Woo-Ghee;Yook Jong-Gwan;Park Han-Kyu
    • Journal of Communications and Networks
    • /
    • v.8 no.2
    • /
    • pp.187-193
    • /
    • 2006
  • In this paper, we study the coexistence of orthogonal frequency division multiplexing (OFDM)-based systems beyond 3G (B3G) and point-to-point (P-P) fixed service (FS) microwave systems. The advanced general analytical model derived via a power spectral density (PSD) analysis proposed in this paper has two advantages in comparison with the conventional minimum coupling loss (MCL) method. First, the interfering signal power that appears in the band of a victim system can be easily assessed without a spectrum emission mask. Second, when transmit power is not allocated to some subcarriers overlapping the band of the victim system in order to mitigate B3G OFDM-based systems interference with other systems, the general analytical model can successfully assess the interference from the B3G systems into FS systems, whereas the MCL method incorporating the spectrum emission mask cannot be applied in the presence of the same interference condition. The proposed model can be derived in a closed form and is simply implemented with the help of simulation, and thus the solution can be obtained in significantly reduced time. Through application of the proposed model, coexistence results are analyzed in a co-channel and adjacent channel with respect to guard band and minimum separation distance.

Analysis on the Impact of UWB Sensor on Broadband Wireless Communication System (UWB 센서에 의한 광대역 무선 시스템의 간섭 영향 분석)

  • Cheng, Yan-Ming;Lee, Il-Kyoo;Lee, Yong-Woo;Oh, Seung-Hyeub;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.83-89
    • /
    • 2010
  • This paper presents the impacts of Ultra Wide-Band(UWB) sensor using frequency of 4.5 GHz on Broadband Wireless communication system which uses frequency of 4.5 GHz. The Minimum Coupling Loss (MCL) method and Spectrum Engineering Advanced Monte Carlo Analysis Tool (SEAMCAT) is used to evaluate the interference effects of UWB sensor on Broadband Wireless communication system, respectively. The minimum protection distance between single UWB sensor and mobile station of Broadband Wireless communication system should be more than 1.2 m to guarantee the co-existence. In case of multiple UWB sensors, UWB transmitting PSD of around -68.5 dBm/MHz below should be required to guarantee interference probability of 5% below for mobile station of Broadband Wireless communication system.

The Interference Effect of DTV Service on Radio Microphone (무선 마이크에 대한 DTV 서비스 간섭 영향 분석)

  • Shim, Yong-Sup;Lee, Il-Kyoo;Cheng, Yan-Ming
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.19-24
    • /
    • 2010
  • This paper analyzes potential interference effect of DTV service on Radio Microphone in adjacent channel. For analysis, we assume that DTV operates on CH 51(692 MHz ~ 698 MHz) and radio microphone operates on CH 52 (698 MHz ~ 704 MHz) according to the Korea Communications Commission policy. Minimum Coupling Loss(MCL) method is used to determine the required protection distance and Monte Carlo method is used to determine guard band to meet interference probability of 0 % below. In conclusions, protection distance of 1.71 km and guard band of 2.4 MHz are required for indoor and protection distance of 18.86 km and guard band of 5.7 MHz are required for outdoor.

Coexistence of OFDM-Based IMT-Advanced and FM Broadcasting Systems

  • Shamsan, Zaid A.;Rahman, Tharek A.;Kamarudin, Muhammad R.;Al-Hetar, Abdulaziz M.;Jo, Han-Shin
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.279-282
    • /
    • 2011
  • Coexistence analysis is extremely important in examining the possibility for spectrum sharing between orthogonal frequency-division multiplexing (OFDM)-based international mobile telecommunications (IMT)-Advanced and other wireless services. In this letter, a new closed form method is derived based on power spectral density analysis in order to analyze the coexistence of OFDM-based IMT-Advanced systems and broadcasting frequency modulation (FM) systems. The proposed method evaluates more exact interference power of IMT-Advanced systems in FM broadcasting systems than the advanced minimum coupling loss (A-MCL) method. Numerical results show that the interference power is 1.3 dB and 3 dB less than that obtained using the A-MCL method at cochannel and adjacent channel, respectively. This reduces the minimum separation distance between the two systems, which eventually saves spectrum resources.

Study on Compatibility between WPT Device at ISM band and Radio Modem (ISM 대역의 WPT 기기와 무선 모뎀의 공존 방안 연구)

  • Kim, SeungNam;Lee, Ilkyoo;Min, Kyoungil
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.47-52
    • /
    • 2014
  • Recently, the interest of Wireless Power Transmission(WPT) has been increased for Mobile device application. It is necessary to analyze interference between wireless devices for the efficient use of frequency resource. The Minimum Coupling Loss(MCL) method and the Monte Carlo(MC) method were used for the interference analysis. In this paper, the impact of the 3rd order harmonics of the wireless charger for Cellular Phone on the existing Radio Modem was analyzed. As a result, the separation distance and the allowable number of interferer on the basis of service radius were obtained to protect the Radio Modem from the wireless charger for Cellular Phone.

Interference Assessment between Radio-Navigation Satellite Service and Mobile Communication Service in Adjacent L-Band (L-대역 무선항행위성업무와 이동업무간 인접대역 간섭 평가)

  • Jeong, Namho;Oh, Dae-Sub;Ku, Bon-Jun
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.58-63
    • /
    • 2013
  • Since radio interference can degrade the performance of systems or limit the system operation, an accurate assessment of radio interference with the existing systems should be conducted prior to the operation of a new system. In this paper, we present an evaluation methodology for the radio interference between radio-navigation satellite service (RNSS) systems and mobile communication service (MS) system. Radio interferences from RNSS systems into MS system using minimum coupling loss (MCL) method are simulated and vice-versa, and the frequency sharing condition between two systems are derived in a same geographical area.

Analysis on Compatibility between wireless headset and WiFi in ISM bands (ISM 대역에서 무선 헤드셋과 WiFi 간의 양립성 분석)

  • Cho, In-Kyoung;Kim, Tae-Youn;Jang, Jae-Woong;Jang, Kyung-Duk;Moon, Guee-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.272-278
    • /
    • 2015
  • This paper analyzed interference impact between wireless headset and Wireless Fidelity which get a high possibility of simultaneously operating in the Industry Science Medical(ISM) bands. Analysis methods of Minimum Coupling Loss(MCL) and Monte Carlo(MC) were applied by using the characters and parameters referenced to Institute of Electrical and Electronic Engineers(IEEE) 802.11b. The protection distance between interferer (WiFi transmitter) and victim (Wireless headset receiver) was calculated through the MCL. The protection distance was obtained for the case of single interferer, and the maximum allowable number of multiple interferers was computed according to the cell radius of a victim system to meet 5 % below of interference probability by using a statistical analysis based on the MC method. The analysis results are expected to be used as a guideline to coexist the wireless headset and low power devices in the ISM band.