• Title/Summary/Keyword: minimum bounding rectangle

Search Result 39, Processing Time 0.025 seconds

Web-based Video Monitoring System on Real Time using Object Extraction and Tracking out (객체 추출 및 추적을 이용한 실시간 웹기반 영상감시 시스템)

  • 박재표;이광형;이종희;전문석
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.4
    • /
    • pp.85-94
    • /
    • 2004
  • Object tracking in a real time image is one of interesting subjects in computer vision and many Practical application fields during the past couple of years. But sometimes existing systems cannot find all objects by recognizing background noise as object. This paper proposes a method of object detection and tracking using adaptive background image in real time. To detect object which is not influenced by illumination and to remove noise in background image, this system generates adaptive background image by real time background image updating. This system detects object using the difference between background image and input image from camera. After setting up Minimum Bounding Rectangle(MBR) using the internal point of detected object, the system tracks object through this MBR In addition, this paper evaluates the test result about performance of proposed method as compared with existing tracking algorithm.

A Spatial Index for PDA using Minimum Bounding Rectangle Compression and Hashing Techniques (최소경계사각형 압축 및 해슁 기법을 이용한 PDA용 공간색인)

  • 김진덕
    • Spatial Information Research
    • /
    • v.10 no.1
    • /
    • pp.61-76
    • /
    • 2002
  • Mobile map services using PDA are prevailing because of the rapid developments of techniques of the internet and handhold devices recently. While the volume of spatial data is tremendous and the spatial operations are time-intensive, the PDA has small size memory and a low performance processor. Therefore, the spatial index for PDA should be small size and efficiently filter out the candidate objects of spatial operation as well. This paper proposes a spatial index far PDA called MHF(Multilevel Hashing File). The MHF has simple structure for storage efficiency and uses a hashing technique, which is direct search method, for search efficiency. This paper also designs a compression technique for MBR. which occupies almost 80% of index data in the two dimensional case. We call it HMBR. Although the HMBR technique reduces the MB\ulcorner size to almost a third, it shows good filtering efficiency because of no information loss by quantization in case of small objects that occupy a major portion. Our experimental tests show that the proposed MHF index using HMBR technique is appropriate for PDA in terms of the size of index, the Number of MBR comparisons, the filtering efficiency and the execution time of spatial operations.

  • PDF

An Efficient Medical Image Compression Considering Brain CT Images with Bilateral Symmetry (뇌 CT 영상의 대칭성을 고려한 관심영역 중심의 효율적인 의료영상 압축)

  • Jung, Jae-Sung;Lee, Chang-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.39-54
    • /
    • 2012
  • Picture Archiving and Communication System (PACS) has been planted as one of the key infrastructures with an overall improvement in standards of medical informationization and the stream of digital hospitalization in recent days. The kind and data of digital medical imagery are also increasing rapidly in volume. This trend emphasizes the medical image compression for storing large-scale medical image data. Digital Imaging and Communications in Medicine (DICOM), de facto standard in digital medical imagery, specifies Run Length Encode (RLE), which is the typical lossless data compressing technique, for the medical image compression. However, the RLE is not appropriate approach for medical image data with bilateral symmetry of the human organism. we suggest two preprocessing algorithms that detect interested area, the minimum bounding rectangle, in a medical image to enhance data compression efficiency and that re-code image pixel values to reduce data size according to the symmetry characteristics in the interested area, and also presents an improved image compression technique for brain CT imagery with high bilateral symmetry. As the result of experiment, the suggested approach shows higher data compression ratio than the RLE compression in the DICOM standard without detecting interested area in images.

A Method of Adative Background Image Generation for Object Tracking (객체 추적을 위한 적응적 배경영상 생성 방법)

  • Jee, Jeong-Gyu;Lee, Kwang-Hyoung;Kim, Yong-Gyun;Oh, Hae-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.329-338
    • /
    • 2003
  • Object tracking in a real time image is one of Interesting subjects in computer vision and many practical application fields past couple of years. But sometimes existing systems cannot find object by recognize background noise as object. This paper proposes a method of object detection and tracking using adaptive background image in real time. To detect object which does not influenced by illumination and remove noise in background image, this system generates adaptive background image by real time background image updating. This system detects object using the difference between background image and input image from camera. After setting up MBR(minimum bounding rectangle) using the internal point of detected object, the system tracks object through this MBR. In addition, this paper evaluates the test result about performance of proposed method as compared with existing tracking algorithm.

3D Visualization of Brain MR Images by Applying Image Interpolation Using Proportional Relationship of MBRs (MBR의 비례 관계를 이용한 영상 보간이 적용된 뇌 MR 영상의 3차원 가시화)

  • Song, Mi-Young;Cho, Hyung-Je
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.339-346
    • /
    • 2003
  • In this paper, we propose a new method in which interpolation images are created by using a small number of axiai T2-weighted images instead of using many sectional images for 3D visualization of brain MR images. For image Interpolation, an important part of this process, we first segment a region of interest (ROI) that we wish to apply 3D reconstruction and extract the boundaries of segmented ROIs and MBR information. After the image size of interpolation layer is determined according to the changing rate of MBR size between top slice and bottom slice of segmented ROI, we find the corresponding pixels in segmented ROI images. Then we calculate a pixel's intensity of interpolation image by assigning to each pixel intensity weights detected by cube interpolation method. Finally, 3D reconstruction is accomplished by exploiting feature points and 3D voxels in the created interpolation images.

Cost Model for Parallel Spatial Joins using Fixed Grids (고정 그리드를 이용한 병렬 공간 조인을 위한 비용 모델)

  • Kim, Jin-Deog;Hong, Bong-Hee
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.665-676
    • /
    • 2001
  • The most expensive spatial operation in patial database in a spatial join which computes a combined table of which tuple consists of two tuples of the two tables satisgying a spatial predicate. Although the execution time of sequential processing of a spatial join has been so far considerably improved the response time is not tolerable because of not meeting the requiremetns of interactive users. It is usually appropriate to use parallel processing to improve the performance of spatial join processing. in spatial database the fixed grids which consist of the regularly partitioned cells can be employed the previous works on the spatial joins have not studied the parallel processing of spatial joins using fixed grids. This paper has presented an analytical cost model that estimates the comparative performance of a parallel spatial join algorithm based on the fixed grids in terms of the number of MBR comparisons. disk accesses, and message passing, Several experiments on the synthetic and real datasets show that the proposed analytical model is very accurate. This most model is also expected to used for implementing a very important DBMS component, Called the query processing optimizer.

  • PDF

An Index-Building Method for Boundary Matching that Supports Arbitrary Partial Denoising (임의의 부분 노이즈제거를 지원하는 윤곽선 매칭의 색인 구축 방법)

  • Kim, Bum-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1343-1350
    • /
    • 2019
  • Converting boundary images to time-series makes it feasible to perform boundary matching even on a very large image database, which is very important for interactive and fast matching. In recent research, there has been an attempt to perform fast matching considering partial denoising by converting the boundary image into time series. In this paper, to improve performance, we propose an index-building method considering all possible arbitrary denoising parameters for removing arbitrary partial noises. This is a challenging problem since the partial denoising boundary matching must be considered for all possible denoising parameters. We propose an efficient single index-building algorithm by constructing a minimum bounding rectangle(MBR) according to all possible denoising parameters. The results of extensive experiments conducted show that our index-based matching method improves the search performance up to 46.6 ~ 4023.6 times.

k-Interest Places Search Algorithm for Location Search Map Service (위치 검색 지도 서비스를 위한 k관심지역 검색 기법)

  • Cho, Sunghwan;Lee, Gyoungju;Yu, Kiyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.259-267
    • /
    • 2013
  • GIS-based web map service is all the more accessible to the public. Among others, location query services are most frequently utilized, which are currently restricted to only one keyword search. Although there increases the demand for the service for querying multiple keywords corresponding to sequential activities(banking, having lunch, watching movie, and other activities) in various locations POI, such service is yet to be provided. The objective of the paper is to develop the k-IPS algorithm for quickly and accurately querying multiple POIs that internet users input and locating the search outcomes on a web map. The algorithm is developed by utilizing hierarchical tree structure of $R^*$-tree indexing technique to produce overlapped geometric regions. By using recursive $R^*$-tree index based spatial join process, the performance of the current spatial join operation was improved. The performance of the algorithm is tested by applying 2, 3, and 4 multiple POIs for spatial query selected from 159 keyword set. About 90% of the test outcomes are produced within 0.1 second. The algorithm proposed in this paper is expected to be utilized for providing a variety of location-based query services, of which demand increases to conveniently support for citizens' daily activities.

A Node Relocation Strategy of Trajectory Indexes for Efficient Processing of Spatiotemporal Range Queries (효율적인 시공간 영역 질의 처리를 위한 궤적 색인의 노드 재배치 전략)

  • Lim Duksung;Cho Daesoo;Hong Bonghee
    • Journal of KIISE:Databases
    • /
    • v.31 no.6
    • /
    • pp.664-674
    • /
    • 2004
  • The trajectory preservation property that stores only one trajectory in a leaf node is the most important feature of an index structure, such as the TB-tree for retrieving object's moving paths in the spatio-temporal space. It performs well in trajectory-related queries such as navigational queries and combined queries. But, the MBR of non-leaf nodes in the TB-tree have large amounts of dead space because trajectory preservation is achieved at the sacrifice of the spatial locality of trajectories. As dead space increases, the overlap between nodes also increases, and, thus, the classical range query cost increases. We present a new split policy and entry relocation policies, which have no deterioration of the performance for trajectory-related queries, for improving the performance of range queries. To maximally reduce the dead space of a non-leaf node's MBR, the Maximal Area Reduction (MAR) policy is used as a split policy for non-leaf nodes. The entry relocation policy induces entries in non-leaf nodes to exchange each other for the purpose of reducing dead spaces in these nodes. We propose two algorithms for the entry relocation policy, and evaluate the performance studies of new algorithms comparing to the TB-tree under a varying set of spatio-temporal queries.