• Title/Summary/Keyword: minimization model

Search Result 565, Processing Time 0.025 seconds

Intelligent Digital Redesign of Observer-Based Output-Feedback Fuzzy Controller Using Delta Operator (델타 연산자를 이용한 관측기 기반 출력 궤환 퍼지 제어기의 디지털 재설계)

  • Moon, Ji Hyun;Lee, Ho Jae;Kim, Do Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.700-705
    • /
    • 2012
  • This paper addresses an intelligent digital redesign (IDR) technique for observer-based output-feedback control systems, in order to efficiently convert a pre-designed Takagi-Sugeno fuzzy model-based analog controller into a sampled-data one in the sense of state matching. A delta operator is used to get an asymptotic relation between the analog and the sampled-data control systems. The IDR problem is viewed as a minimization problem of the norm distances between linear operator to be matched. The condition is represented as linear matrix inequalities, and the separation principle on the IDR is shown.

Massive MIMO with Transceiver Hardware Impairments: Performance Analysis and Phase Noise Error Minimization

  • Tebe, Parfait I.;Wen, Guangjun;Li, Jian;Huang, Yongjun;Ampoma, Affum E.;Gyasi, Kwame O.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2357-2380
    • /
    • 2019
  • In this paper, we investigate the impact of hardware impairments (HWIs) on the performance of a downlink massive MIMO system. We consider a single-cell system with maximum ratio transmission (MRT) as precoding scheme, and with all the HWIs characteristics such as phase noise, distortion noise, and amplified thermal noise. Based on the system model, we derive closed-form expressions for a typical user data rate under two scenarios: when a common local oscillator (CLO) is used at the base station and when separated oscillators (SLOs) are used. We also derive closed-form expressions for the downlink transmit power required for some desired per-user data rate under each scenario. Compared to the conventional system with ideal transceiver hardware, our results show that impairments of hardware make a finite upper limit on the user's downlink channel capacity; and as the number of base station antennas grows large, it is only the hardware impairments at the users that mainly limit the capacity. Our results also show that SLOs configuration provides higher data rate than CLO at the price of higher power consumption. An approach to minimize the effect of the hardware impairments on the system performance is also proposed in the paper. In our approach, we show that by reducing the cell size, the effect of accumulated phase noise during channel estimation time is minimized and hence the user capacity is increased, and the downlink transmit power is decreased.

Influence of Sulfate on Thermodynamic Modeling of Hydration of Alkali Activated Slag (알칼리 활성 슬래그의 열역학적 수화모델링에 대한 황산염의 영향)

  • Lee, Hyo Kyoung;Park, Sol-Moi;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.32-39
    • /
    • 2019
  • The present study investigated hydration of alkali activated slag incorporating sulfate as a form of anhydrite by employing thermodynamic modeling using the Gibbs free energy minimization approach. Various parameters were evaluated in the thermodynamic calculations, such as presence of sulfide, precipitation/dissolution of AFt/AFm phase, and the effect of oxic condition on the predicted reaction. The calculations suggested no significant difference in the void volume and chemical shrinkage, which might influence the performance of the mixtures, in spite of various changes of the parameters. Although the types of hydration products and their amount varied according to the input conditions, their variations were smaller range than that induced by water-to-binder ratio. Moreover, it did not affect the amount of C-(N-)A-S-H which was the most important hydration product.

Development of Day Fog Detection Algorithm Based on the Optical and Textural Characteristics Using Himawari-8 Data

  • Han, Ji-Hye;Suh, Myoung-Seok;Kim, So-Hyeong
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.117-136
    • /
    • 2019
  • In this study, a hybrid-type of day fog detection algorithm (DFDA) was developed based on the optical and textural characteristics of fog top, using the Himawari-8 /Advanced Himawari Imager data. Supplementary data, such as temperatures of numerical weather prediction model and sea surface temperatures of operational sea surface temperature and sea ice analysis, were used for fog detection. And 10 minutes data from visibility meter from the Korea Meteorological Administration were used for a quantitative verification of the fog detection results. Normalized albedo of fog top was utilized to distinguish between fog and other objects such as clouds, land, and oceans. The normalized local standard deviation of the fog surface and temperature difference between fog top and air temperature were also assessed to separate the fog from low cloud. Initial threshold values (ITVs) for the fog detection elements were selected using hat-shaped threshold values through frequency distribution analysis of fog cases.And the ITVs were optimized through the iteration method in terms of maximization of POD and minimization of FAR. The visual inspection and a quantitative verification using a visibility meter showed that the DFDA successfully detected a wide range of fog. The quantitative verification in both training and verification cases, the average POD (FAR) was 0.75 (0.41) and 0.74 (0.46), respectively. However, sophistication of the threshold values of the detection elements, as well as utilization of other channel data are necessary as the fog detection levels vary for different fog cases(POD: 0.65-0.87, FAR: 0.30-0.53).

A Study on the Influence of Securities on Corporate Financing Behavior in Financial Markets (금융시장에서 담보가 기업의 자금조달선택에 미치는 영향에 관한 연구)

  • Park, seok gang
    • International Area Studies Review
    • /
    • v.22 no.3
    • /
    • pp.201-219
    • /
    • 2018
  • This paper suggested a theoretical model, in which a security-based(secured loan, non-secured loan) credit agreement determines the form of corporate cost function through a loaning company's cost minimization in the light of a company which behaves monopolistically in product markets. Also, this paper analyzed the influence of a corporate credit agreement on market equilibrium, and economic welfare in product markets. As a result, it was found that in case a company, whose equity capital is small, implements borrowing based on a secured loan from a financial institution, the company comes to face borrowing restraints, in which the company has no choice but to get a loan within the scope of securities. When a company offers its capital goods, i.e. a production factor, as a security, there occurs a distortion to the production factor input ratio. Meanwhile, when a company comes to get a loan based on an unsecured loan, for which the interest rate is high, marginal cost rises; accordingly, the company comes to choose a credit agreement aiming at maximizing its profits. However, a company's choice of a credit agreement is not quite desirable from a consumer's viewpoint, and from the whole economic point of view; overall, such a choice is likely to aggravate economic welfare.

Stochastic Optimization of Multipath TCP for Energy Minimization and Network Stability over Heterogeneous Wireless Network

  • Arain, Zulfiqar Arain;Qiu, Xuesong;Zhong, Lujie;Wang, Mu;Chen, Xingyan;Xiong, Yongping;Nahida, Kiran;Xu, Changqiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.195-215
    • /
    • 2021
  • Multipath Transport Control Protocol (MPTCP) is a transport layer protocol that enables multiple TCP connections across various paths. Due to path heterogeneity, it incurs more energy in a multipath wireless network. Recent work presents a set of approaches described in the literature to support systems for energy consumption in terms of their performance, objectives and address issues based on their design goals. The existing solutions mainly focused on the primary system model but did not discourse the overall system performance. Therefore, this paper capitalized a novel stochastically multipath scheduling scheme for data and path capacity variations. The scheduling problem formulated over MPTCP as a stochastic optimization, whose objective is to maximize the average throughput, avoid network congestion, and makes the system more stable with greater energy efficiency. To design an online algorithm that solves the formulated problem over the time slots by considering its mindrift-plus penalty form. The proposed solution was examined under extensive simulations to evaluate the anticipated stochastic optimized MPTCP (so-MPTCP) outcome and compared it with the base MPTCP and the energy-efficient MPTCP (eMPTCP) protocols. Simulation results justify the proposed algorithm's credibility by achieving remarkable improvements, higher throughput, reduced energy costs, and lower-end to end delay.

Accuracy Improvement of the Transport Index in AFC Data of the Seoul Metropolitan Subway Network (AFC기반 수도권 지하철 네트워크 통행지표 정확도 향상 방안)

  • Lee, Mee-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.247-255
    • /
    • 2021
  • Individual passenger transfer information is not included in Seoul metropolitan subway Automatic Fare Collection (AFC) data. Currently, basic data such as travel time and distance are allocated based on the TagIn terminal ID data records of AFC data. As such, knowledge of the actual path taken by passengers is constrained by the fact that transfers are not applied, resulting in overestimation of the transport index. This research proposes a method by which a transit path that connects the TagIn and TagOut terminal IDs in AFC data is determined and applied to the transit index. The method embodies the concept that a passenger's line of travel also accounts for transfers, and can be applied to the transit index. The path selection model for the passenger calculates the line of transit based on travel time minimization, with in-vehicle time, transfer walking time, and vehicle intervals all incorporated into the travel time. Since the proposed method can take into account estimated passenger movement trajectories, transport-related data of each subway organization included in the trajectories can be accurately explained. The research results in a calculation of 1.47 times the values recorded, and this can be evaluated directly in its ability to better represent the transportation policy index.

Partial Offloading System of Multi-branch Structures in Fog/Edge Computing Environment (FEC 환경에서 다중 분기구조의 부분 오프로딩 시스템)

  • Lee, YonSik;Ding, Wei;Nam, KwangWoo;Jang, MinSeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1551-1558
    • /
    • 2022
  • We propose a two-tier cooperative computing system comprised of a mobile device and an edge server for partial offloading of multi-branch structures in Fog/Edge Computing environments in this paper. The proposed system includes an algorithm for splitting up application service processing by using reconstructive linearization techniques for multi-branch structures, as well as an optimal collaboration algorithm based on partial offloading between mobile device and edge server. Furthermore, we formulate computation offloading and CNN layer scheduling as latency minimization problems and simulate the effectiveness of the proposed system. As a result of the experiment, the proposed algorithm is suitable for both DAG and chain topology, adapts well to different network conditions, and provides efficient task processing strategies and processing time when compared to local or edge-only executions. Furthermore, the proposed system can be used to conduct research on the optimization of the model for the optimal execution of application services on mobile devices and the efficient distribution of edge resource workloads.

Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT

  • Djilali, Nassira;Bousahla, Abdelmoumen Anis;Kaci, Abdelhakim;Selim, Mahmoud M.;Bourada, Fouad;Tounsi, Abdeldjebbar;Tounsi, Abdelouahed;Benrahou, Kouider Halim;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.779-789
    • /
    • 2022
  • This work presents a non-linear cylindrical bending analysis of functionally graded plate reinforced by single-walled carbon nanotubes (SWCNTs) in thermal environment using a simple integral higher-order shear deformation theory (HSDT). This theory does not require shear correction factors and the transverse shear stresses vary parabolically through the thickness. The material properties of SWCNTs are assumed to be temperature-dependent and are obtained from molecular dynamics simulations. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTCRs) are considered to be graded in the thickness direction, and are estimated through a micromechanical model. The non-linear strain-displacement relations in the Von Karman sense are used to study the effect of geometric non-linearity and the solution is obtained by minimization of the total potential energy. The numerical illustrations concern the nonlinear bending response of FG-CNTRC plates under different sets of thermal environmental conditions, from which results for uniformly distributed CNTRC plates are obtained as benchmarks.

Structural system identification by measurement error-minimization observability method using multiple static loading cases

  • Lei, Jun;Lozano-Galant, Jose Antonio;Xu, Dong;Zhang, Feng-Liang;Turmo, Jose
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.339-351
    • /
    • 2022
  • Evaluating the current condition of existing structures is of primary importance for economic and safety reasons. This can be addressed by Structural System Identification (SSI). A reliable static SSI depends on well-designed sensor configuration and loading cases, as well as efficient parameter estimation algorithms. Static SSI by the Measurement Error-Minimizing Observability Method (MEMOM) is a model-based deterministic static SSI method that could estimate structural parameters from static responses. In the current state of the art, this method is only applicable when structures are subjected to one loading case. This might lead to lack of information in some local regions of the structure (such as the null curvatures zones). To address this issue, the SSI by MEMOM using multiple loading cases is proposed in this work. Observability equations obtained from different loading cases are concatenated simultaneously and an optimization procedure is introduced to obtain the estimations by minimizing the discrepancy between the predicted response and the measured one. In addition, a Genetic-Algorithm (GA)-based Optimal Sensor Placement (OSP) method is proposed to tackle the OSP problem under multiple static loading cases for the very first time. In this approach, the Fisher Information Matrix (FIM)'s determinant is used as the metric of the goodness of sensor configurations. The numerical examples of a 3-span continuous bridge and a 13-story frame, are analyzed to validate the applicability of the extended SSI by MEMOM and the GA-based OSP method.