• Title/Summary/Keyword: minimization model

Search Result 568, Processing Time 0.034 seconds

A Process Decomposition Strategy for Qualitative Fault Diagnosis of Large-scale Processes (대형공정의 정성적 이상진단을 위한 공정분할전략)

  • Lee Gibaek
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.42-49
    • /
    • 2000
  • Due to their size and complexity, it is very difficult to make diagnostic system for the whole chemical processes. Therefore, a systematic approach is required to decompose larpge-scale process into sub-processes and then diagnose them. This paper suggests a method for the minimization of knowledge base and flexible diagnosis to be used in qualitative fault diagnosis based on Fault-Effect Tree model. The system can be decomposed for flexible diagnosis, size reduction of knowledge base, and consistent construction of complex knowledge base. The new node, gate-variable, is introduced to connect the cause-effect relationships of each sub-process. For on-line diagnosis, off-line analysis is performed to construct Fault-Effect Trees of gate-variables as well as activation conditions of gate-variables. On-line diagnosis strategy is modified to get the same diagnosis result without system decomposition. The proposed method is illustrated with a fault diagnosis system for a large-scale boiler plant.

  • PDF

Bus and Registor Optimization in Datapath Synthesis (데이터패스 합성에서의 버스와 레지스터의 최적화 기법)

  • Sin, Gwan-Ho;Lee, Geun-Man
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2196-2203
    • /
    • 1999
  • This paper describes the bus scheduling problem and register optimization method in datapath synthesis. Scheduling is process of operation allocation to control steps in order to minimize the cost function under the given circumstances. For that purpose, we propose some formulations to minimize the cost function for bus assignment to get an optimal and minimal cost function in hardware allocations. Especially, bus and register minimization technique are fully considered which are the essential topics in hardware allocation. Register scheduling is done after the operation and bus scheduling. Experiments are done with the DFG model of fifth-order digital ware filter to show its effectiveness. Structural integer programming formulations are used to solve the scheduling problems in order to get the optimal scheduling results in the integer linear programming environment.

  • PDF

Experimental Test Time Reduction Method for Step Responses Using the Time-Optimal Control Technique (시간최적제어 기법을 이용한 계단응답 실험시간 단축 방법)

  • Lee, Jietae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.190-196
    • /
    • 2020
  • The step to obtain a process dynamic model through process experiments is very important because it needs times and expenditures. Step response method is one of the standard methods to have long been used for understanding process dynamics, obtaining dynamical models and designing control systems. For the step response, it is usually required to measure process output for a step input change in the open-loop manner. Its disadvantage criticized is the long open-loop operation. For this, a method based on the time-optimal control technique to minimize the test time for obtaining the step response has been recently presented. However, the method requires iterative computations for the minimization of test times. Here, a method where iterative computations are not required is proposed. Simulation results are presented to show that test times to obtain step responses are reduced considerably and an autotuning method based on the proposed method is compared with the relay feedback autotuning method accepted widely for the autotuning of controllers.

Centralized Control Algorithm for Power System Performance using FACTS Devices in the Korean Power System

  • Kang, Sang-Gyun;Seo, Sang-Soo;Lee, Byong-Jun;Chang, Byung-Hoon;Myung, Ro-Hae
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.353-362
    • /
    • 2010
  • This paper presents a centralized control algorithm for power system performance in the Korean power system using Flexible AC Transmission Systems (FACTS) devices. The algorithm is applied to the Korean power system throughout the metropolitan area in order to alleviate inherent stability problems, especially concerns with voltage stability. Generally, control strategies are divided into local and centralized control. This paper is concerned with a centralized control strategy in terms of the global system. In this research, input data of the proposed algorithm and network data are obtained from the SCADA/EMS system. Using the full system model, the centralized controller monitors the system condition and decides the operating point according to the control objectives that are, in turn, dependent on system conditions. To overcome voltage collapse problems, load-shedding is currently applied in the Korean power system. In this study, the application of the coordination between FACTS and switch capacitor (SC) can restore the solvability without load shedding or guarantee the FV margin when the margin is insufficient. Optimal Power Flow (OPF) algorithm, for which the objective function is loss minimization, is used in a stable case. The results illustrate examples of the proposed algorithm using SCADA/EMS data of the Korean power system in 2007.

Modeling and Composition Method of Collective Behavior of Interactive Systems for Knowledge Engineering (지식공학을 위한 상호작용 시스템의 집단 행위 모델링 및 합성 방법)

  • Song, Junsup;Rahmani, Maryam;Lee, Moonkun
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1178-1193
    • /
    • 2017
  • It is very important to understand system behaviors in collective pattern for each knowledge domain. However, there are structural limitations to represent collective behaviors because of the size of system components and the complexity of their interactions, causing the state explosion problem. Further composition with other systems is mostly impractical because of exponential growth of their size and complexity. This paper presents a practical method to model the collective behaviors, based on a new concept of domain engineering: behavior ontology. Firstly, the ontology defines each collective behavior of a system from active ontology. Secondly, the behaviors are formed in a quantifiably abstract lattice, called common regular expression. Thirdly, a lattice can be composed with other lattices based on quantifiably common elements. The method can be one of the most innovative approaches in representing system behaviors in collective pattern, as well as in minimization of system states to reduce system complexity. For implementation, a prototype tool, called PRISM, has been developed on ADOxx Meta-Modelling Platform.

Optimization of a Rotating Two-Pass Rectangular Cooling Channel with Staggered Arrays of Pin-Fins (곡관부 하류에 핀휜이 부착된 회전 냉각유로의 최적설계)

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.43-53
    • /
    • 2010
  • This study investigates a design optimization of a rotating two-pass rectangular cooling channel with staggered arrays of pin-fins. The radial basis neural network method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The ratio of the diameter to height of the pin-fins and the ratio of the streamwise spacing between the pin-fins to height of the pin-fin are selected as design variables. The optimization problem has been defined as a minimization of the objective function, which is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. Results are presented for streamlines, velocity vector fields, and contours of Nusselt numbers, friction coefficients, and turbulent kinetic energy. These results show how fluid flow in a two-pass square cooling channel evolves a converted secondary flows due to Coriolis force, staggered arrays of pin-fins, and a $180^{\circ}$ turn region. These results describe how the fluid flow affects surface heat transfer. The Coriolis force induces heat transfer discrepancy between leading and trailing surfaces, having higher Nusselt number on the leading surface in the second pass while having lower Nusselt number on the trailing surface. Dean vortices generated in $180^{\circ}$ turn region augment heat transfer in the turning region and in the upstream region of the second pass. As the result of optimization, in comparison with the reference geometry, thermal performance of the optimum geometry shows the improvement by 30.5%. Through the optimization, the diameter of pin-fin increased by 14.9% and the streamwise distance between pin-fins increased by 32.1%. And, the value of objective function decreased by 18.1%.

Assessment of Multiple Delamination in Laminated Composites for Aircrafts using X-ray Backscattering (X-ray 후방산란 기술을 이용한 항공기용 복합재료의 다중 층간 박리 평가)

  • Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.1
    • /
    • pp.46-53
    • /
    • 2010
  • A Compton X-ray backscatter technique has been developed to quantitatively assess impact damage in quasi-isotropic laminated composites made by a drop-weight tester. X-ray backscatter imaging system with a slit-type camera is constructed to obtain a cross-sectional profile of impact-damaged laminated composites from the electron-density variation of the cross section. A nonlinear scattering model based on Boltsman equation is introduced to compute Compton X-ray backscattering field for the defect assessment. An adaptive filter is also used to reduce noises from many sources including quantum noise and irregular distributions of fibers and matrix in composites. Delaminations masked or distorted by the first delamination are detected and characterized effectively by the Compton X-ray backscatter technique, both in width and location, by application of error minimization algorithm.

Energy-efficient Buffer-aided Optimal Relay Selection Scheme with Power Adaptation and Inter-relay Interference Cancellation

  • Xu, Xiaorong;Li, Liang;Yao, Yingbiao;Jiang, Xianyang;Hu, Sanqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5343-5364
    • /
    • 2016
  • Considering the tradeoff between energy consumption and outage behavior in buffer-aided relay selection, a novel energy-efficient buffer-aided optimal relay selection scheme with power adaptation and Inter-Relay Interference (IRI) cancellation is proposed. In the proposed scheme, energy consumption minimization is the objective with the consideration of relay buffer state, outage probability and relay power control, in order to eliminate IRI. The proposed scheme selects a pair of optimal relays from multiple candidate relays, denoted as optimal receive relay and optimal transmit relay respectively. Source-relay and relay-destination communications can be performed within a time-slot, which performs as Full-Duplex (FD) relaying. Markov chain model is applied to analyze the evolution of relay buffer states. System steady state outage probability and achievable diversity order are derived respectively. In addition, packet transmission delay and power reduction performance are investigated with a specific analysis. Numerical results show that the proposed scheme outperforms other relay selection schemes in terms of outage behavior with power adaptation and IRI cancellation in the same relay number and buffer size scenario. Compared with Buffer State relay selection method, the proposed scheme reduces transmission delay significantly with the same amount of relays. Average transmit power reduction can be implemented to relays with the increasing of relay number and buffer size, which realizes the tradeoff between energy-efficiency, outage behavior and delay performance in green cooperative communications.

Optimal Control of steady Incompressible Navier-Stokes Flows (Navier-Stokes 유체의 최적 제어)

  • Bark, Jai-Hyeong;Hong, Soon-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.661-674
    • /
    • 2002
  • The objective of this study is to develop efficient numerical method to enable solution of optimal control problems of Navier-Stokes flows and to apply these technique to the problem of viscous drag minimization on a bluff body by controlling boundary velocities on the surface of the body. In addition to the industrial importance of the drag reduction problem, it serves as a model for other more complex flow optimization settings, and allows us to study, modify, and improve the behavior of the optimal control methods proposed here. The control is affected by the suction or injection of fluid on portions of the boundary, and the objective function represents the rate at which energy is dissipated in the fluid. This study shows how reduced Hessian successive quadratic programming method, which avoid converging the flow equations at each iteration, can be tailored to these problems.

Distortion Minimization Resource Allocation Scheme for Multiuser Video Transmission Over OFDM Network with Proportional Rates (다수 사용자 OFDM 시스템에서의 비디오 전송을 위한 비례 율 적용 왜곡 최소화 자원 할당 방법)

  • Ha, Ho-Jin;Yim, Chang-Hoon;Kim, Young-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.583-591
    • /
    • 2008
  • This paper proposes a resource allocation algorithm for minimizing the overall distortion of multiple users in orthogonal frequency division multiplex (OFDM). The proposed algorithm exploits the diversity of multiuser and the rate-distortion function using packet distortion model in a system with limited resources. We first induce a rate-distortion function considering error concealment and error propagation properties of H.264 video structures. Then we perform adaptive resource allocation utilizing multiuser diversity for minimizing the overall video quality degradation. We also consider the proportional rate which is pre-determined for each user. Simulation results show that compared to the previous time division multiple access method and the resource allocation method maximizing data rate, the proposed rate allocation algorithm substantially improves the received video quality.