• Title/Summary/Keyword: minimization model

Search Result 565, Processing Time 0.022 seconds

Nonlinear bending and post-buckling behaviors of FG small-scaled plates based on modified strain gradient theory using Ritz technique

  • Ghannadpour, S. Amir M.;Khajeh, Selma
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.393-406
    • /
    • 2022
  • In the present article, functionally graded small-scaled plates based on modified strain gradient theory (MSGT) are studied for analyzing the nonlinear bending and post-buckling responses. Von-Karman's assumptions are applied to incorporate geometric nonlinearity and the first-order shear deformation theory is used to model the plates. Modified strain gradient theory includes three length scale parameters and is reduced to the modified couple stress theory (MCST) and the classical theory (CT) if two or all three length scale parameters become zero, respectively. The Ritz method with Legendre polynomials are used to approximate the unknown displacement fields. The solution is found by the minimization of the total potential energy and the well-known Newton-Raphson technique is used to solve the nonlinear system of equations. In addition, numerical results for the functionally graded small-scaled plates are obtained and the effects of different boundary conditions, material gradient index, thickness to length scale parameter and length to thickness ratio of the plates on nonlinear bending and post-buckling responses are investigated and discussed.

Analysis of Key Success Factors for Building a Smart Supply Chain Using AHP (AHP를 이용한 스마트 공급망 구축을 위한 주요 성공요인 분석)

  • Cheol-Soo Park
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.1-15
    • /
    • 2023
  • With the advent of the Fourth Industrial Revolution, propelled by digital technology, we are transitioning into an era of hyperconnectivity, where everything and objects are becoming interconnected. A smart supply chain refers to a supply chain system where various sensors and RFID tags are attached to objects such as machinery and products used in the manufacturing and transportation of goods. These sensors and tags collect and analyze process data related to the products, providing meaningful information for operational use and decision-making in the supply chain. Before the spread of COVID-19, the fundamental principles of supply chain management were centered around 'cost minimization' and 'high efficiency.' A smart supply chain overcomes the linear delayed action-reaction processes of traditional supply chains by adopting real-time data for better decision-making based on information, providing greater transparency, and enabling enhanced collaboration across the entire supply chain. Therefore, in this study, a hierarchical model for building a smart supply chain was constructed to systematically derive the importance of key factors that should be strategically considered in the construction of a smart supply chain, based on the major factors identified in previous research. We applied AHP (Analytical Hierarchy Process) techniques to identify urgent improvement areas in smart SCM initiatives. The analysis results showed that the external supply chain integration is the most urgent area to be improved in smart SCM initiatives.

A Pedestrian Network Assignment Model Considering Space Syntax (공간구문론(Space Syntax)을 고려한 통합보행네트워크 통행배정모형)

  • Lee, Mee Young;Kim, Jong Hyung;Kim, Eun Jung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.37-49
    • /
    • 2015
  • In Space Syntax, the greater the degree of integration between separate links, the greater the links' accessibility from the target network. As such, planning pedestrian walks so that links with high degrees of integration are connected, or else inducing high integration value land use are both valid options. The travel distribution model reflects how walking demand, or more specifically, the pedestrian, partakes in route choosing behavior that minimizes select criteria, notably level of discomfort, as measured using travel distance and time. The model thus demonstrates travel patterns associated with demand pertaining to minimization of discomfort experienced by the pedestrian. This research introduces a method that integrates Space Syntax and the pedestrian travel distribution model. The integrated model will determine whether regions with high degrees of integration are actually being used as pivots for pedestrian demand movement, as well as to explain whether the degree of integration is sustained at an appropriate level while considering actual movement demand. As a means to develop the integrated model, a method that combines display of the visibility of the space syntax network and road-divided links is proposed. The pedestrian travel distribution model also includes an alternative path finding mechanism between origin and destination, which allows for uniform allocation of demand.

A Comparative Study on Approximate Models and Sensitivity Analysis of Active Type DSF for Offshore Plant Float-over Installation Using Orthogonal Array Experiment (직교배열실험을 이용한 해양플랜트 플로트오버 설치 작업용 능동형 DSF의 민감도해석과 근사모델 비교연구)

  • Kim, Hun-Gwan;Song, Chang Yong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.187-196
    • /
    • 2021
  • The paper deals with comparative study for characteristics of approximation of design space according to various approximate models and sensitivity analysis using orthogonal array experiments in structure design of active type DSF which was developed for float-over installation of offshore plant. This study aims to propose the orthogonal array experiments based design methodology which is able to efficiently explore an optimum design case and to generate the accurate approximate model. Thickness sizes of main structure member were applied to the design factors, and output responses were considered structure weight and strength performances. Quantitative effects on the output responses for each design factor were evaluated using the orthogonal array experiment. Best design case was also identified to improve the structure design with weight minimization. From the orthogonal array experiment results, various approximate models such as response surface model, Kriging model, Chebyshev orthogonal polynomial model, and radial basis function based neural network model were generated. The experiment results from orthogonal array method were validated by the approximate modeling results. It was found that the radial basis function based neural network model among the approximate models was able to approximate the design space of the active type DSF with the highest accuracy.

A New Clock Routing Algorithm for High Performance ICs (고성능 집적회로 설계를 위한 새로운 클락 배선)

  • 유광기;정정화
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.11
    • /
    • pp.64-74
    • /
    • 1999
  • A new clock skew optimization for clock routing using link-edge insertion is proposed in this paper. It satisfies the given skew bound and prevent the total wire length from increasing. As the clock skew is the major constraint for high speed synchronous ICs, it must be minimized in order to obtain high performance. But clock skew minimization can increase total wire length, therefore clock routing is performed within the given skew bound which can not induce the malfunction. Clock routing under the specified skew bound can decrease total wire length Not only total wire length and delay time minimization algorithm using merging point relocation method but also clock skew reduction algorithm using link-edge insertion technique between two nodes whose delay difference is large is proposed. The proposed algorithm construct a new clock routing topology which is generalized graph model while previous methods uses only tree-structured routing topology. A new cost function is designed in order to select two nodes which constitute link-edge. Using this cost function, delay difference or clock skew is reduced by connecting two nodes whose delay difference is large and distance difference is short. Furthermore, routing topology construction and wire sizing algorithm is developed to reduce clock delay. The proposed algorithm is implemented in C programming language. From the experimental results, we can get the delay reduction under the given skew bound.

  • PDF

A Study on the Optimal Method for recycling the Waste Electronics' Reverse Logistics (폐전자제품 회수물류 최적화 연구)

  • Lee, Seok Kee;Roh, Jae-Whak;Cho, Yeong Bin
    • International Commerce and Information Review
    • /
    • v.16 no.4
    • /
    • pp.171-190
    • /
    • 2014
  • A short consumption cycle caused by the technological development and the diversification of customer lead to both the dynamic growth of the industry and the waste recycling issue at the same time. Including Korea, the situation is particularly worrisome in some countries, such as India and China, where acute environmental hazards have resulted from a combination of a lack of recycling centers' capacity and the domination of a large backyard recycling sector. A study about to maximize the current recycling center efficiency with minimal changes is required. In this study, we suggest the optimal location selection method for the recycling center based on the well-known reverse logistics cost minimization model. An actual recycling data about a specific electronic equipment and region in Korea are used for the verification of the method suggested.

  • PDF

Comparative Study of Performance of Switching Control and Synchronous Notch Filter Control for Active Magnetic Bearings (능동 자기 베어링을 위한 동기 노치필터 제어기와 스위칭 제어기의 성능 비교 연구)

  • Yoo, Seong Yeol;Noh, Myounggyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.511-519
    • /
    • 2013
  • Switching controllers for active magnetic bearings are claimed to minimize the copper losses because they do not use bias currents. In this study, we compare the performances of the switching controller with those of the widely used proportional-derivative (PD) controller. The PD controller is combined with a synchronous notch filter to reduce the effect of the unbalance disturbance. For a fair and objective comparison, the PD controller is designed systematically. The switching controller is designed so that the dynamics of the two controllers are almost identical. A system model is developed. This model includes the flexible modes of the rotor and the dynamics of the sensors and amplifiers. The simulation results show that the switching controller indeed reduces the copper loss at lower speeds. However, it fails to operate around the speed close to the bending mode of the rotor.

Aquifer Transmissivity Estimation with Kriging Techniques and Numerical Model in the LAN (Kriging기법과 수치모형에 의한 이안지구 대수층의 투수량계수 추정)

  • 조웅현;박영기;김환홍
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.2
    • /
    • pp.113-120
    • /
    • 1994
  • One of the delicate problems in aquifer management is the identification of the spatial distribution of tile hydrological parameters. The observed data are insufficient to identify the distribution of transmissivities in LAN aquifer. To determine the distribution of the transmissivity in LAN aquifer, it would be required to transform the observed heads at the pilot points into transmissivities. Therefore, three procedures wire tackled for the identification of the spatial distribution of the hydrological parameters; geostatistical estimate of the parameter field on the basis of known well point, heads reconstructed by a numerical model, and modification of the values at pilot points by a minimization algorithm. The variogram of Kriging has been applied to a total of 258 transmissivity value in attempt to quantify their distribution of LAN aquifer. Variogram of the observed and optimized transmissivities at pilot points are adapted to the exponential form. So, it is fitted by theoretical one with coefficients of w=0.623, a=2.743. Values of head obtained through numerical analysis are adjusted to the observed values so that heads have been transformed completely into the transmissivities at the observation wells. The procedure represented contour map of the estimated transmissivities and the calculated head.

  • PDF

Optimization of coagulation conditions for pretreatment of microfiltration process using response surface methodology

  • Jung, Jungwoo;Kim, Yoon-Jin;Park, Youn-Jong;Lee, Sangho;Kim, Dong-ha
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.223-229
    • /
    • 2015
  • The application of coagulation for feed water pretreatment prior to microfiltration (MF) process has been widely adopted to alleviate fouling due to particles and organic matters in feed water. However, the efficiency of coagulation pretreatment for MF is sensitive to its operation conditions such as pH and coagulant dose. Moreover, the optimum coagulation condition for MF process is different from that for rapid sand filtration in conventional drinking water treatment. In this study, the use of response surface methodology (RSM) was attempted to determine coagulation conditions optimized for pretreatment of MF. The center-united experimental design was used to quantify the effects of coagulant dose and pH on the control of fouling control as well as the removal organic matters. A MF membrane (SDI Samsung, Korea) made of polyvinylidene fluoride (PVDF) was used for the filtration experiments. Poly aluminum chloride (PAC) was used as the coagulant and a series of jar tests were conducted under various conditions. The flux was $90L/m^2-h$ and the fouling rate were calculated in each condition. As a result of this study, an empirical model was derived to explore the optimized conditions for coagulant dose and pH for minimization of the fouling rate. This model also allowed the prediction of the efficiency of the coagulation efficiency. The experimental results were in good agreement with the predictions, suggesting that RSM has potential as a practical method for modeling the coagulation pretreatment for MF.

Mathematical Model for Acousto-Optical Tomography and Its Numerical Simulation (음향광학 단층촬영(Acousto-Optical Tomography)의 수학적 모델과 수치해석적 시뮬레이션)

  • Nam, Hae-Won;Hur, Jang-Yong;Kim, So-Young;Lee, Re-Na
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.42-47
    • /
    • 2012
  • In this paper, Acousto-Optical tomography is modeled by a linear integral equation and an inverse problem involving a diffusion equation in n-spatial dimensions. We make two-step mathematical model. First, we solve a linear integral equation. Assuming the optical energy fluence rate has been recovered from the previous equation, the absorption coefficient ${\mu}$ is then reconstructed by solving an inverse problem. Numerical experiments are presented for the case n=2. The traditional gradient descent method is used for the numerical simulations. The result of the gradient descent method produces the blurring effect. To get rid of the blurring effect, we suggest the total variation regularization for the minimization problem.