• Title/Summary/Keyword: minimization model

Search Result 564, Processing Time 0.024 seconds

A Study on Optimization of Lane-Use and Traffic Signal Timing at a Signalized Intersection (신호교차로의 차로 배정과 신호시간 최적화 모형에 관한 연구)

  • Kim, Ju Hyun;Shin, Eon Kyo
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.93-103
    • /
    • 2015
  • PURPOSES : The purpose of this study is to present a linear programing optimization model for the design of lane-based lane-uses and signal timings for an isolated intersection. METHODS: For the optimization model, a set of constraints for lane-uses and signal settings are identified to ensure feasibility and safety of traffic flow. Three types of objective functions are introduced for optimizing lane-uses and signal operation, including 1) flow ratio minimization of a dual-ring signal control system, 2) cycle length minimization, and 3) capacity maximization. RESULTS : The three types of model were evaluated in terms of minimizing delay time. From the experimental results, the flow ratio minimization model proved to be more effective in reducing delay time than cycle length minimization and capacity maximization models and provided reasonable cycle lengths located between those of other two models. CONCLUSIONS : It was concluded that the flow ratio minimization objective function is the proper one to implement for lane-uses and signal settings optimization to reduce delay time for signalized intersections.

The Prediction of Fatigue Life According to the Determination of the Parameter in Residual Strength Degradation Model (잔류강도 저하모델의 파라미터결정법에 따른 피로수명예측)

  • 김도식;김정규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2053-2061
    • /
    • 1994
  • The static and fatigue tensile tests have been conduted to predict the fatigue life of 8-harness satin woven and plain woven carbon/epoxy composite plates containing a circular hole. A fatigue residual strength degradation model, based on the assumption that the residual strength for unnotched specimen decreases monotonically, has been applied to predict statistically the fatigue life of materials used in this study. To determine the parameters(c, b and K) of the residual strength degradation model, the minimization technique and the maximum likelihood method are used. Agreement of the converted ultimate strength by using the minimization technique with the static ultimate strength is reasonably good. Therefore, the minimization technique is more adjustable in the determination of the parameter and the prediction of the fatigue life than the maximum likelihood method.

An Error-Bounded B-spline Fitting Technique to Approximate Unorganized Data (무작위 데이터 근사화를 위한 유계오차 B-스플라인 근사법)

  • Park, Sang-Kun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.4
    • /
    • pp.282-293
    • /
    • 2012
  • This paper presents an error-bounded B-spline fitting technique to approximate unorganized data within a prescribed error tolerance. The proposed approach includes two main steps: leastsquares minimization and error-bounded approximation. A B-spline hypervolume is first described as a data representation model, which includes its mathematical definition and the data structure for implementation. Then we present the least-squares minimization technique for the generation of an approximate B-spline model from the given data set, which provides a unique solution to the problem: overdetermined, underdetermined, or ill-conditioned problem. We also explain an algorithm for the error-bounded approximation which recursively refines the initial base model obtained from the least-squares minimization until the Euclidean distance between the model and the given data is within the given error tolerance. The proposed approach is demonstrated with some examples to show its usefulness and a good possibility for various applications.

The Power Flow Control of UPFC for Cost Minimization

  • Lim, Jung-Uk;Moon, Seung-Il
    • KIEE International Transactions on Power Engineering
    • /
    • v.12A no.1
    • /
    • pp.31-35
    • /
    • 2002
  • This paper presents a new operation scheme of UPFC to minimize both generation costs and active power losses in a normal operation state of power system. In a normal operation, cost minimization is a matter of primary concern among operating objectives. This paper considers two kinds of costs, generation costs and transmission losses. The total generation cost of active powers can be minimized by optimal power flow, and active power losses in the transmission system can be also minimized by power flow control of UPFC incorporated with minimization of generation costs. In order to determine amounts of active power reference of each UPFC required for the cost minimization, an iterative optimization algorithm based on the power flow calculation using the decoupled UPFC model is proposed. For verification of the proposed method, intensive studies have been performed on a 3-unit 6-bus system equipped with a UPFC.

Edge Detection using Enhanced Cost Minimization Methods

  • Seong-Hoon Lee
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.88-93
    • /
    • 2024
  • The main problem with existing edge detection techniques is that they have many limitations in detecting edges for complex and diverse images that exist in the real world. This is because only edges of a defined shape are discovered based on an accurate definition of the edge. One of the methods to solve this problem is the cost minimization method. In the cost minimization method, cost elements and cost functions are defined and used. The cost function calculates the cost for the candidate edge model generated according to the candidate edge generation strategy, and if the cost is found to be satisfactory, the candidate edge model becomes the edge for the image. In this study, we proposed an enhanced candidate edge generation strategy to discover edges for more diverse types of images in order to improve the shortcoming of the cost minimization method, which is that it only discovers edges of a defined type. As a result, improved edge detection results were confirmed.

Model-Based Loss Minimization Control for Induction Generators - in Wind Power Generation Systems (모델 기반의 풍력발전용 유도발전기의 최소 손실 제어)

  • Abo-Khalil, Ahmed G.;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.7
    • /
    • pp.380-388
    • /
    • 2006
  • In this paper, a novel control algorithm to minimize the power loss of the induction generator for wind power generation system is presented. The proposed method is based on the flux level reduction, where the flux level is computed from the machine model for the optimum d-axis current of the generator. For the vector-controlled induction generator, the d-axis current controls the excitation level in order to minimize the generator loss while the q-axis current controls the generator torque, by which the speed of the induction generator is controlled according to the variation of the wind speed in order to produce the maximum output power. Wind turbine simulator has been implemented in laboratory to validate the theoretical development. The experimental results show that the loss minimization process is more effective at low wind speed and that the percent of power loss saving can approach to 25%. Experimental results are shown to verify the validity of the proposed scheme.

Modeling Optimal Lane Configuration at the Toll Plaza by Nonlinear Integer Programming Incorporated with an M/G/1 Queueing Process

  • Kim, Seong-Moon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.403-406
    • /
    • 2006
  • This paper provides an M/G/1 queueing model for the operations management problem at the toll plaza. This queueing process is incorporated with two non-linear integer programming models - the user cost minimization model during the peak times and the operating cost minimization model during the off-peak hours.

  • PDF

Meta Model-Based Desgin Optimization of Double-Deck Train Carbody (2 층열차 차체의 meta model 기반 최적설계)

  • Hwang W.J.;Jung J.J.;Lee T.H.;Kim H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.387-392
    • /
    • 2005
  • Double-deck train have studied in the next generation train in KRRI. Double-deck train have more seat capacities compared with single deck vehicles and is a efficient, reliable and comfortable alternative train. Because of heavy weight, weight minimization of double-deck train carbody is imperative to reduce cost and extend life-time of train. Weight minimization problem of the double-deck train car-body is required to decide 66 design variables of thicknesses for large aluminum extruded panel while satisfying stress constraints. Design variables are too many and one execution of structural analysis of double-deck train carbody is time-consuming. Therefore, we adopt approximation technique to save computational cost of optimization process. Metamodels such as response surface model (RSM) and kriging model are used to approximate model-based optimization is described. RSM is easy to obtain and expressed explicit function, but this is not suitable for highly nonlinear and large scaled problems. Kriging model employs an interpolation scheme and is developed in the fields of spatial statistics and geostatistics. Target of this design is to find optimum thickness of AEP to minimize weight of doulbe-deck train carbody. In this study, meta model techniques are introduced to carry out weight minimization of a double-deck train car-body.

  • PDF

A study on the weight minimization of an engine block (엔진 블록의 중량 최소화에 관한 연구)

  • 오창근;박석주;박영범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.231-236
    • /
    • 1996
  • Recently to develope an automobile with better properties, much researches and investments are executed in many countries. In this paper, the weight of an engine block intend to minimize without changing the natural frequency. The weight minimization of an engine block is started from much less initial thickness than original thickness of the model and performed by using the sensitive analysis method and the optimum structural modification method. It can be considered that the weight minimization is completed through this process, because the optimum structural modification method includes the constraint of minimum changing quantity.

  • PDF

A quasistatic crack propagation model allowing for cohesive forces and crack reversibility

  • Philip, Peter
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.31-44
    • /
    • 2009
  • While the classical theory of Griffith is the foundation of modern understanding of brittle fracture, it has a number of significant shortcomings: Griffith theory does not predict crack initiation and path and it suffers from the presence of unphysical stress singularities. In 1998, Francfort and Marigo presented an energy functional minimization method, where the crack (or its absence) as well as its path are part of the problem's solution. The energy functionals act on spaces of functions of bounded variations, where the cracks are related to the discontinuity sets of such functions. The new model presented here uses modified energy functionals to account for molecular interactions in the vicinity of crack tips, resulting in Barenblatt cohesive forces, such that the model becomes free of stress singularities. This is done in a physically consistent way using recently published concepts of Sinclair. Here, for the consistency of the model, it becomes necessary to allow for crack reversibility and to consider local minimizers of the energy functionals. The latter is achieved by introducing different time scales. The model is solved in its global as well as in its local version for a simple one-dimensional example, showing that local minimization is necessary to yield a physically reasonable result.