• 제목/요약/키워드: minimax theorem

검색결과 26건 처리시간 0.019초

A NON-COMPACT GENERALIZATION OF HORVATH'S INTERSECTION THEOREM$^*$

  • Kim, Won-Kyu
    • 대한수학회보
    • /
    • 제32권2호
    • /
    • pp.153-162
    • /
    • 1995
  • Ky Fan's minimax inequality is an important tool in nonlinear functional analysis and its applications, e.g. game theory and economic theory. Since Fan gave his minimax inequality in [2], various extensions of this interesting result have been obtained (see [4,11] and the references therein). Using Fan's minimax inequality, Ha [6] obtained a non-compact version of Sion's minimax theorem in topological vector spaces, and next Geraghty-Lin [3], Granas-Liu [4], Shih-Tan [11], Simons [12], Lin-Quan [10], Park-Bae-Kang [17], Bae-Kim-Tan [1] further generalize Fan's minimax theorem in more general settings. In [9], using the concept of submaximum, Komiya proved a topological minimax theorem which also generalized Sion's minimax theorem and another minimax theorem of Ha in [5] without using linear structures. And next Lin-Quan [10] further generalizes his result to two function versions and non-compact topological settings.

  • PDF

GENERALIZED MINIMAX THEOREMS IN GENERALIZED CONVEX SPACES

  • Kim, Hoon-Joo
    • 호남수학학술지
    • /
    • 제31권4호
    • /
    • pp.559-578
    • /
    • 2009
  • In this work, we obtain intersection theorem, analytic alternative and von Neumann type minimax theorem in G-convex spaces. We also generalize Ky Fan minimax inequality to acyclic versions in G-convex spaces. The result is applied to formulate acyclic versions of other minimax results, a theorem of systems of inequalities and analytic alternative.

A TWO-FUNCTION MINIMAX THEOREM

  • Kim, Won Kyu;Kum, Sangho
    • 충청수학회지
    • /
    • 제21권3호
    • /
    • pp.321-326
    • /
    • 2008
  • In this note, using the separation theorem for convex sets, we will give a two functions version generalization of Fan's minimax theorem by relaxing the convexlike assumption to the weak convexlike condition.

  • PDF

MULTIPLICITY RESULTS FOR THE ELLIPTIC SYSTEM USING THE MINIMAX THEOREM

  • Nam, Hyewon
    • Korean Journal of Mathematics
    • /
    • 제16권4호
    • /
    • pp.511-526
    • /
    • 2008
  • In this paper, we consider an elliptic system of three equations using the minimax theorem. We prove the existence of two solutions for suitable forcing terms, under a condition on the linear part which prevents resonance with eigenvalues of the operator.

  • PDF

ELEMENTS OF THE KKM THEORY FOR GENERALIZED CONVEX SPACE

  • Park, Se-Hei
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.1-28
    • /
    • 2000
  • In the present paper, we introduce fundamental results in the KKM theory for G-convex spaces which are equivalent to the Brouwer theorem, the Sperner lemma, and the KKM theorem. Those results are all abstract versions of known corresponding ones for convex subsets of topological vector spaces. Some earlier applications of those results are indicated. Finally, We give a new proof of the Himmelberg fixed point theorem and G-convex space versions of the von Neumann type minimax theorem and the Nash equilibrium theorem as typical examples of applications of our theory.

FIXED POINTS AND ALTERNATIVE PRINCIPLES

  • Park, Se-Hie;Kim, Hoon-Joo
    • 호남수학학술지
    • /
    • 제34권3호
    • /
    • pp.439-449
    • /
    • 2012
  • In a recent paper, M. Balaj [B] established an alternative principle. The principle was applied to a matching theorem of Ky Fan type, an analytic alternative, a minimax inequality, and existence of solutions of a vector equilibrium theorem. Based on the first author's fixed point theorems, in the present paper, we obtain generalizations of the main result of Balaj [B] and their applications.

COINCIDENCE THEOREMS FOR NONCOMPACT ℜℭ-MAPS IN ABSTRACT CONVEX SPACES WITH APPLICATIONS

  • Yang, Ming-Ge;Huang, Nan-Jing
    • 대한수학회보
    • /
    • 제49권6호
    • /
    • pp.1147-1161
    • /
    • 2012
  • In this paper, a coincidence theorem for a compact ${\Re}\mathfrak{C}$-map is proved in an abstract convex space. Several more general coincidence theorems for noncompact ${\Re}\mathfrak{C}$-maps are derived in abstract convex spaces. Some examples are given to illustrate our coincidence theorems. As applications, an alternative theorem concerning the existence of maximal elements, an alternative theorem concerning equilibrium problems and a minimax inequality for three functions are proved in abstract convex spaces.