• 제목/요약/키워드: minimal bactericidal concentration

Search Result 42, Processing Time 0.023 seconds

Antimicrobial Effects of Oleanolic Acid against Streptococcus mutans and Streptococcus sobrinus Isolated from a Korean Population

  • Kim, Min-Jung;Kim, Chun-Sung;Ha, Woo-Hyung;Kim, Byung-Hoon;Lim, Yun-Kyong;Park, Soon-Nang;Cho, Yu-Jin;Kim, Myung-Mi;Ko, Jang-Hyuk;Kwon, Soon-Sung;Ko, Yeong-Mu;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.35 no.4
    • /
    • pp.191-195
    • /
    • 2010
  • Oleanolic acid is a natural triterpenoid that exists widely in foods and some medicinal herbs. The purpose of this study was to determine the antimicrobial activity of oleanolic acid against Streptococcus mutans strains isolated from a Korean population. Antimicrobial activity against these bacteria was evaluated by minimal inhibitory concentration (MIC) and time kill curves. The tolerance of human gingival fibroblasts and human periodontal ligaments to oleanolic acid was tested using a methyl thiazolyl tetrazolium (MTT) assay. The $MIC_{90}$ value of oleanolic acid for both S. mutans and S. sobrinus isolated from Koreans was 8 ${\mu}g/ml$. Oleanolic acid showed bactericidal effects against S. mutans ATCC $25175^T$ and S. sobrinus ATCC $33478^T$ at $1\;{\times}\;MIC$ ($8{\mu}g/ml$) and had no cytotoxic effects against KB cells at this dose. The results suggest that oleanolic acid could be useful in the future development of oral hygiene products for the prevention of dental caries.

The antibacterial effect of xanthorrhizol as an endodontic irrigant on Enterococcus faecalis

  • Yue, Wonyoung;Song, Minju;Kang, Si-Mook;Kim, Baek-il;Yoon, Tai-Cheol;Kim, Euiseong
    • The Journal of the Korean dental association
    • /
    • v.54 no.3
    • /
    • pp.206-216
    • /
    • 2016
  • Objectives The aim of this study was to evaluate the antibacterial effect of xanthorrhizol (XTZ) on E. faecalis, compared with 2% chlorhexidine (CHX). Materials and Methods Normal physiological state (NS), starvation state (SS), and alkalization state (AS) of E. faecalis were used. A solution containing 1% XTZ in 30% ethanol, 1% dimethyl sulfoxide (DMSO), and 100 mg/ml sodium methyl cocoyl taurate was used and is referred to as Xan in this study. To determine the minimal bactericidal concentration (MBC) of Xan and CHX, $500{\mu}l$ of E. faecalis (NS and two stress states) was added to a microtube containing $500{\mu}l$ of serial 2-fold dilutions of 1% Xan and 2% CHX (1:2-1:128). The MBC of each antimicrobial was determined by the plate count method. Results The antibacterial effect of Xan was more effective on E. faecalis in AS than in the other states (NS, SS) at 0.125% Xan and 0.03325% Xan (P<0.05). In contrast, the antibacterial effect of CHX was more effective against E. faecalis in SS than the other states (NS, AS) at 0.0625% CHX (P<0.05). In SS, the antibacterial effect of CHX was more effective than that of Xan at 0.125% and 0.0625% (P<0.05). However, in AS, the antibacterial effect of Xan was more effective than that of CHX at 0.0625% and 0.03325% (P<0.05). Conclusions In endodontic retreatment cases in which it is important to effectively remove E. faecalis from the infected root canal, Xan may be more suitable when combined with NaOCl than CHX.

  • PDF

THE EFFECT OF POLYPHOSPHATE ON THE GROWTH OF PORPHYROMONAS ENDODONTALIS (Polyphosphate가 Porphyromonas endodontalis의 성장에 미치는 영향에 관한 연구)

  • Choi, Sung-Baik;Choi, Ho-Young;Min, Byung-Soon;Park, Sang-Jin;Lee, Jin-Yong;Choi, Ki-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.175-182
    • /
    • 1998
  • Polyphosphate has been used to prevent decomposition of foods and has been shown to have inhibitory effect on the growth of gram positive bacteria. The purpose of this study was to evaluate the effect of polyphosphate on the growth of Porphyromonas endodontalis, a gram negative endodontopathic bacterium. Porphyromonas endodontalis ATCC 35406 was grown in the presence of polyphosphates with different chain lengths. Inhibitory effect of each polyphosphate which was added at the beginning or during the culture, was determined by measuring the optical density of the bacterial cell at 540nm and by viable cell count. The results from this study were as follows : 1. Polyphosphates were shown the growth inhibition of the Porphyromonas endodontalis. 2. The minimal inhibitory concentration(MIC) of polyphosphate was observed to be 0.04%. 3. Polyphosphates with chain lengths of 25 and 75 demonstrated the greatest inhibitory effect on the growth of Porphyromonas endodontalis. 4. Polyphosphates are bactericidal to Porphyromonas endodontalis, demonstrating the growth inhibition of the bacterium. The overall results suggest that use of polyphosphate may affect the growth of Porphyromonas endodontalis. Further studies will be needed to confirm the effect of, polyphosphate.

  • PDF

Study on Deodorizing Effects of Mume Fructus, Eriobotryae Folium, Acanthopanacis Cortex and Angelicae Dahuricae Radix for the Development of a Gargle Solution (구강함수제 개발을 위한 오매, 비파엽, 오가피, 백지의 구취억제효과 연구)

  • Jang, Sun-Young;Park, Jae-Woo;Yoon, Seong-Woo;Ryu, Bong-Ha;Kim, Jin-Sung
    • The Journal of Korean Medicine
    • /
    • v.31 no.4
    • /
    • pp.115-128
    • /
    • 2010
  • Objectives: The aim of this study was to investigate deodorizing effectsof medicinal herbs (Mume Fructus, Eriobotryae Folium, Acanthopanacis Cortex, Angelicae Dahuricae Radix) for development of a gargle solution. Methods: 1. The antimicrobial effects of medicinal herbs were evaluated with the minimal bactericidal concentration (MBC) and the change of the number of viable cells in the herb extracts(1%) for 48 hrs against P. gingivalis 2561 and Pr. intermedia ATCC 25611. 2. Deodorizing activity of each herb and Garglin $Mint^{(R)}$gainst methyl mercaptan were analyzed by gas chromatography (GC). 3. We used the malodor modeling of the salivary sediment system with a Halimeter. 4. In the preliminary clinical study, the baseline concentration of VSC in the oral cavity of each subject was measured by Halimeter. Subjects would gargle for 30 seconds with cysteine. After 4 minutes subjects would gargle for 30 seconds with Garglin and herb extracts (2%). Subsequently, concentration of VSC were measured at 0, 4, 8, 12 and 20 minutes. Results: 1. MBC of Mume Fructusfor P. gingivalis 2561 was determined to be <1% and MBCs of Eriobotryae Folium for P. gingivalis 2561 and Pr. intermedia ATCC 25611 were determined to be <2% and <1%, respectively. Mume Fructus (1%) completely suppressed the P. gingivalis cell viability from 5 hrs and Eriobotryae Folium (1%) completely suppressed the Pr. intermedia cell viability from 48 hrs. 2. In GC analysis, deodorizing activities were 91.54% with Mume Fructus, 87.97% with Eriobotryae Folium, 100% with Acanthopanacis Cortex, 72.36% with Angelicae Dahuricae Radix and 40.54% with Garglin $Mint^{(R)}$. 3. In malodor modeling of the salivary sediment system, each of the medicinal herbs had significantly inhibitory effect on malodor formation (p<0.05). 4. In the preliminary clinical study, the concentration of VSC of the herb groups was significantly lower than of the control group, but not in Garglin $Mint^{(R)}$. Conclusions: Mume Fructus, Eriobotryae Folium, Acanthopanacis Cortex and Angelicae Dahuricae Radixhave deodorizing activities and potential as an effective mouthwash against oral malodor.

The Anti-Bacterial Effect of Witch Hazel(Hamamelis virginiana) on Oral Pathogens (Witch hazel(Hamamelis virginiana)의 구강병원균에 대한 항균 효과)

  • Ryu, Seong-Yong;Ahn, Hyung-Joon;Kwon, Jeong-Seung;Park, Ju-Hyun;Kim, Jae-Young;Choi, Jong-Hoon
    • Journal of Oral Medicine and Pain
    • /
    • v.33 no.2
    • /
    • pp.159-166
    • /
    • 2008
  • An ideal anti-bacterial medication for oral infection requires selective effect on pathogens causing dental caries and periodontal disease but not on normal flora. In addition, it should be less toxic for human and even for environment. This study was to seek such a natural anti-bacterial medication and thus anti-bacterial effect of Hamamelis virginiana was evaluated. Many recent researches on the anti-bacterial effect of natural plant extract and essential oil have reported that natural products can be used as medication for prevention and restrainment of dental caries, halitosis and periodontitis. It has been also reported that Hamamelis virginiana has anti-bacterial effect on Porphyromonas gingivalis, Fusobacterium nucleatum, Capnocytophaga gingivalis, Veilonella parvula, Eikenella corrodens, Peprostreptococcus micros, and Actinomyces odontolyticus. This study evaluated anti-bacterial effect of Hamamelis virginiana on Streptoccoccus mutans, Haemophylus actinomycetemcomitans, and Klebsiella pneumoniae to expand its anti-bacterial effect on other important oral pathogens and eventually to develop its oral care products or apply to clinical purpose. In this study, anti-bacterial tests for antibiotic disk susceptibility, minimal inhibitory concentration and minimal bactericidal concentration were performed to evaluate anti-bacterial effect of Hamamelis virginiana against Streptoccoccus mutans, Haemophylus actinomycetemcomitans, and Klebsiella pneumoniae. The results showed that Hamamelis virginiana has anti-bacterial effect on all pathogen strains tested in this study and furthermore Hamamelis virginiana possesses bactericidal effect other than bacteriostatic effect on Streptoccoccus mutans, Haemophylus actinomycetemcomitans, Klebsiella pneumoniae. This study indicates that a natural anti-bacterial medication for oral diseases can be developed using Hamamelis virginiana.

MECHANISM IN ANTIBACTERIAL ACTIVITY OF POLYPHOSPHATES AGAINST PORPHYROMONAS ENDODONTALIS (Porphyromonas endodontalis에 대한 Polyphosphate의 항균기전에 관한 연구)

  • Choi, Sung-Baik;Park, Sang-Jin;Choi, Gi-Woon;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.4
    • /
    • pp.561-574
    • /
    • 2000
  • Poly-P has been used to prevent decomposition of foods and has been shown to have inhibitory effect on the growth of gram positive bacteria. The purpose of this study was to evaluate the effect of poly-P on the growth of Porphyromonas endodontalis, a gram negative obligate anaerobic rod, endodontopathic bacterium. P. endodontalis ATCC 35406 was in BHI broth containing hemin and vitamin K with or without poly-P. Inhibitory effect of each poly-P which was added at the beginning(lag phase) or during(exponential phase) the culture, MIC(minimum inhibitory concentration) was determined by measuring the optical density of the bacterial cell at 540nm. Viable cell counts were measured to determined whether poly-P has a bactericidal effect. Leakage of intracellular nucleotides from P. endodontalis was determined at 260nm and morphological change of P. endodontalis was observed under the TEM(transmission electron microscope). Binding of 32P-labeled poly-P to P. endodontalis was examined. SDS-polyacrylamide gel electrophoresis and zymography were performed to observe the changes in protein and enzyme profiles of P. endodontalis, respectively. The results from this study were as follows : 1. The minimal inhibitory concentration(MIC) of poly-P to P. endodontalis appeared to be 0.04~0.05%. 2. Poly-P added to the P. endodontalis culture during the exponential phase of P. endodontalis was as much effective as poly-P added at the begining of the culture, suggesting that the antibacterial effect of poly-P is not much dependent on the initial inoculum size of P. endodontalis. 3. Poly-P are bactericidal to P. endodontalis, demonstrating the decrease of the viable cell counts. 4. Intracellular nucleotide release from the P. endodontalis, was not increased in the presence of poly-P and was not reversed by the addition of divalent cations like $Ca^{2+}$ and $Mg^{2-}$. 5. Under the TEM, it was observed that fine electro-dense materials were prominent in the poly-P grown P. endodontalis, appearing locally in the cell, and the materials were more abundant and more dispersed in the cell as the incubation time with poly-P increased. In addition, highly electron dense granules accumulated in many poly-P grown cells, most of which were atypical in their shape. 6. Binding of 32P-labeled poly-P to P. endodontalis appeared to be 32.8 and 45.5 and 53.4% at 30 minutes, 1 hours and 2 hours, respectively. 7. In the presence of poly-P. the synthesis of proteins with apparent molecular masses of 25, 27, 35, 45 was lost or drastically decreased whereas expression of a protein with an apparent molecular mass of 75 was elevated. 8. Proteolytic activity of P. endodontalis was decreased by poly-P. The overall results suggest that use of poly-P may affect the growth of P. endodontalis, and the anti-bacterial activity of poly-P seems largely bactericidal. Changes in shape, protein expression, and proteolytic activity of P. endodontalis by poly-P may be directly and indirectly attributed to the antibacterial effect of poly-P. Further studies will be needed to confirm the effect of poly-P.

  • PDF

Antimicrobial Effect of Carvacrol against Cariogenic and Periodontopathic Bacteria (치아우식증 및 치주질환 원인균에 대한 Carvacrol의 항균효과)

  • Park, Soon-Nang;Lee, Dong-Kyun;Lim, Yun-Kyong;Kim, Hwa-Sook;Cho, Eu-Gene;Jin, Dongchun;Kim, Saeng-Gon;Kook, Joong-Ki
    • Korean Journal of Microbiology
    • /
    • v.48 no.1
    • /
    • pp.52-56
    • /
    • 2012
  • The aim of this study was to evaluate the antimicrobial effect of carvacrol against periodontopathic and cariogenic bacteria and its cytotoxicity in human oral tissue cells. We tested their antibacterial properties against mutans streptococci and five major periodontopathic bacterial species involved in periodontal disease. The antimicrobial activity was evaluated by the minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The cell viability of carvacrol on normal human gingival fibroblast (NHGF) cells was tested by metyl thiazolyl tetrazolium assay. The data showed that carvacrol had remarkable antimicrobial effect on tested bacteria with a MIC and MBC values ranged from 16 to $128{\mu}g/ml$ and from 32 to $128{\mu}g/ml$, respectively. In cell toxicity studies, carvacrol had significantly decreased cell viability when NHGF cells were treated at $128{\mu}g/ml$. These findings suggest that carvacrol has a strong antimicrobial activity against periodontopathic and cariogenic bacteria. However, in order to use it as a component of gargling solution or toothpaste, its concentration should be below $64{\mu}g/ml$ and other compounds having an antimicrobial activity against periodontopathic and cariogenic bacteria should be used together.

Deodorizing Effect of Several Antibacterial Medicinal Herbs on Oral Malodor (항균작용을 가진 수종 한약재의 구취억제 효과)

  • Kim, Hyun-Kyung;Park, Jae-Woo;Yoon, Seong-Woo;Ryu, Bong-Ha;Kim, Jin-Sung
    • The Journal of Korean Medicine
    • /
    • v.31 no.4
    • /
    • pp.151-163
    • /
    • 2010
  • Objective: We investigated the oral malodor inhibitory effect of Scutellariae Radix (SR), Phellodendri Cortex (PC), Moutan Cortex (MTC) and Magnoliae Cortex (MGC) for the development of a gargle solution. Methods: 1. Against P. gingivalis and Pr. intermedia, the minimal bactericidal concentration (MBC) and the change of viable cells that were exposed to 1% each herbal extract were observed. 2. Deodorizing activity of 2% herbal extract and Garglin $Mint^{(R)}$ against methyl mercaptan were evaluated by gas chromatography (GC). 3. We used the salivary sediment system (SSS) as the malodor model. 4. The clinical examination was repeated 3 times by 2 subjects by $Halimeter^{(R)}$. Baseline VSC of each subject was measured. Then, the control subject gargled with cysteine for 30 sec. After 4 min, subjects would gargle for 30 seconds with herbal extracts (2%) and Garglin $Mint^{(R)}$. Subsequently, the concentration of VSC was measured at 0, 4, 8, 12, 16, 20, 40 and 60 minutes. Results: 1. Against P. gingivalis, MBC of SR, PC and MTC was 0.1%, and MBC of MGC was 1%. Removal time of P. gingivalis was as follows; 5 hr in MGC, 24 hr in SR and PC, and 48 hr in MTC. Against Pr. intermedia, MBC of SR and PC was 0.5%, and MBC of MTC, MGC was 1%. Removal time of Pr. intermedia was as follows; 5 hr in MTC and 24 hr in SR, PC and MGC. 2. Deodorizing effect of herbal extracts against methyl mercaptan was as follows; MGC and MTC had 100%, SR had 82.22%, PC had 66.60%, Garglin $Mint^{(R)}$ had 40.54%. 3. In the experiment using SSS, PC and MTC had statistically significant malodor-inhibitory effects (p<.05). 4. In the clinical examination, PC and MGC had statistically significant inhibitory effects at every elapsed time compared to the control subject. MTC had that until 40 min. SR had that at 0, 4, 8, 20, and 60 min. Conclusions: SR, PC, MTC and MGC have an antibacterial effect and the chemical removable activity of the oral malodor caused by VSC. These four herbs could have potential as effective anti-malodor agents.

Effects of Foreign Plant Extracts on Cell Growth and Biofilm Formation of Streptococcus Mutans (해외 자생식물추출물이 Streptococcus mutans의 세포 성장 및 생물막 형성에 미치는 영향)

  • Moon, Kyung Hoon;Lee, Yun-Chae;Kim, Jeong Nam
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.712-723
    • /
    • 2019
  • Chemically synthesized compounds are widely used in oral hygiene products. However, excessively long-term use of these chemicals can cause undesirable side effects such as bacterial tolerance, allergy, and tooth discoloration. To solve these issues, significant effort is put into the search for natural antibacterial agents. The aim of this study was to assess the extracts of foreign native plants that inhibit the growth and biofilm formation of Streptococcus mutans. Among the 300 foreign plant extracts used in this study, Chesneya nubigena (D. Don) Ali extract had the highest antimicrobial activity relatively against S. mutans with a clear zone of 9 mm when compared to others. This plant extract also showed anti-biofilm activity and bacteriostatic effect (minimal bactericidal concentration [MBC], 1.5 mg/ml). In addition, the plant extracts of 19 species decreased the ability of S. mutans to form biofilm at least a 6-fold in proportion to the tested concentrations. Of particular note, C. nubigena (D. Don) Ali extract was found to inhibit biofilm formation at the lowest concentration tested effectively. Therefore, our results reveal that C. nubigena (D. Don) Ali extract is a potential candidate for the development of antimicrobial substitutes, which might be effective for caries control as well, as demonstrated by its inhibitory effect on the persistence and pathogenesis of S. mutans.

ANTIBACTERIAL EFFECT OF POLYPHOSPHATES ON MUTANS STREPTOCOCCI (Mutans streptococci에 대한 polyphosphate의 항균효과)

  • Kang, Kye-Sook;Choi, Yeong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.80-91
    • /
    • 2003
  • Mutans streptococci, especially S. mutans and S. sobrinus strongly implicated in pathogenesis of dental caries, the major cause of tooth loss in children. Use of an antibacterial agent controlling dental caries has been rationalized. The present study was performed to observe the antibacterial effect of inorganic polyphosphates (polyP) on S. mutans and S. sobrinus. S. mutans GS5 and S. sobrinus 6715 were grown in brain-heart infusion broth with or without polyP. Minimal inhibitory concentration (MIC) of polyP for S. mutans GS5 was determined to be 0.08% and that for S. sobrius 6715 was 0.17%. PolyP 15 added to the growing culture of S. mutans GS5 and S. sobrinus 6715 at their exponential phase was as effective in inhibiting the growth of S. mutans GS5 and S. sobrinus 6715 as polyP added at the very beginning of the culture. More than 85% of the cells lost their viability determined by viable cell count when polyP 15 was added to the culture of growing S. mutans GS5 at MIC, suggesting that polyP 15 has bacterial effect on the bacterium. And more than 99.9% of the cells lost their viability determined by viable cell count when polyP 15 was added to the culture of growing S. sobrinus 6715 at MIC, suggesting that polyP 15 has bacterial effect on the bacterium. Intracellular nucleotide release from S. mutans CS5 and S. sobrinus 6715 was increased in the presence of polyP 15 for 5h but was not really reversed by the addition of divalent cations like $Ca^{++}\;and\;Mg^{++}$. The majority of the cells appeared to be atypical in their shape, demonstrating accumulation of highly electron-dense granules and ghost cells. The overall results suggest that polyP have a strong bactericidal activity against S. mutans and S. sobrinus in which lysis in relation to chelation may not play the major role but unknown mechanism that possibly affects the viability of the bacterium may be involved. PolyP may be used as an agent for prevention of dental caries.

  • PDF