• 제목/요약/키워드: minihyper

검색결과 1건 처리시간 0.014초

DETERMINATION OF MINIMUM LENGTH OF SOME LINEAR CODES

  • Cheon, Eun Ju
    • 충청수학회지
    • /
    • 제26권1호
    • /
    • pp.147-159
    • /
    • 2013
  • Hamada ([8]) and Maruta ([17]) proved the minimum length $n_3(6,\;d)=g_3(6,\;d)+1$ for some ternary codes. In this paper we consider such minimum length problem for $q{\geq}4$, and we prove that $n_q(6,\;d)=g_q(6,\;d)+1$ for $d=q^5-q^3-q^2-2q+e$, $1{\leq}e{\leq}q$. Combining this result with Theorem A in [4], we have $n_q(6,\;d)=g-q(6,\;d)+1$ for $q^5-q^3-q^2-2q+1{\leq}d{\leq}q^5-q^3-q^2$ with $q{\geq}4$. Note that $n_q(6,\;d)=g_q(6,\;d)$ for $q^5-q^3-q^2+1{\leq}d{\leq}q^5$ by Theorem 1.2.