• Title/Summary/Keyword: mines

Search Result 857, Processing Time 0.029 seconds

Stable Isotope and Fluid Inclusion Studies of Gold-Silver-Bearing Hyarothermal-Vein Deposits, Cheonan-Cheongyang-Nonsan Mining District, Republic of Korea: Cheongyang Area (한반도 천안-청양-논산지역 광화대내 금-은 열수광상의 안정동위원소 및 유체포유물 연구 : 청양지역)

  • So, Chil-Sup;Shelton, K.L.;Chi, Se-Jung;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.21 no.2
    • /
    • pp.149-164
    • /
    • 1988
  • Electrum-sulfide mineralization of the Samgwang and Sobo mines of the Cheongyang Au-Ag area was deposited in two stages of quartz and calcite veins that fill fault zones in granite gneiss. Radiometric dating indicates that mineralization is Early Cretaceous age (127 Ma). Fluid inclusion and sulfur isotope data show that ore mineralization was deposited at temperatures between $340^{\circ}$ and $180^{\circ}C$ from fluids with salinities of 1 to 8 wt. % equiv. NaCl and a ${\delta}^{34}S_{{\sum}S}$ value of 2 to 5 per mil. Evidence of fluid boiling (and $CO_2$ effervescence) indicates a range of pressures from < 200 to $\approx$ 700 bars, corresponding to depths of ${\approx}1.5{\pm}0.3\;km$ in a hydrothermal system which alternated from lithostatic toward hydrostatic conditions. Au-Ag deposition was likely a result of boiling coupled with cooling. Meaured and calculated hydrogen and oxygen isotope values of ore-forming fluids indicate a significant meteoric water component, approaching unexchanged paleometeoric water values. Comparison of these values with those of other Korean Au-Ag deposits reveals a relationship among depth, Au/Ag ratio and degree of water-rock interaction. All investigated Korean Jurassic and Cretaceous gold-silver-bearing deposits have fluids which are dominantly evolved meteoric waters, but only deeper systems (${\geq}1.5\;km$) are exclusively gold-rich.

  • PDF

Geochemical Characteristics and Origin of Dissolved Ions in the Han River Water (한강 하천수 중 용존이온의 지구화학적 특성과 기원)

  • 김규한;심은숙
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.539-553
    • /
    • 2001
  • Geochemical data of the Han river water, including four tributary water samples in the main Han river are presented in this paper. The concentration of dissolved ions in the North Han river water decreases in order of Ca>Na>K>Mg and HCO$_3$>NO$_3$>SO$_4$>Cl, which it mainly affected by the chemical weathering of granite and gneiss in the drainage basin. Meanwhile, the South Han river water shows a decreasing order of Ca>Mg>Na>K and HCO$_3$>SO$_4$>NO$_3$>Cl, which is controlled by the bed rock geology of carbornate rooks and the inflow of acid mine drainage from the metal and coal mines in the Taebaegsan and Hwanggangri areas. The main Han river waters are characterized by unusually high concentration of Na, Cl and SO$_4$ (Ca>Na>K>Mg and HCO$_3$>SO$_4$>CI>NO), indicating a significant anthropogenic pollution by human activities in the metropolitan Seoul city. The geochemical data of the Han river waters from 1981 through 1996 to 1999 records a significant increase in SO$_4$ and NO$_3$, which responsible for the increasing arid mane drainage and municipal anthropogenic pollution.

  • PDF

Gold-Silver Mineralization in the Kwangyang-Seungju Area (광양-승주지역 금은광상의 광화작용)

  • Lee, Chang Shin;Kim, Yong Jun;Park, Cheon Yong;Ko, Chin Surk
    • Economic and Environmental Geology
    • /
    • v.26 no.2
    • /
    • pp.145-154
    • /
    • 1993
  • Gold-silver deposits in the Kwangyang-Seungju area are emplaced along $N4^{\circ}{\sim}10^{\circ}W$ to $N40^{\circ}{\sim}60^{\circ}W$ trending fissures and fault in Pre-cambrian Jirisan gneiss complex or Cretaceous diorite. Mineral constituents of the ore from above deposits are composed mainly of pyrite, arsenopyrite, pyrrhotite, magnetite, sphalerite, chalcopyrite, galena and minor amount of electrum, tetrahedrite, miargyrite, stannite, covellite and goethite. The gangue minerals are predominantly quartz and calcite. Gold minerals consist mostly of electrum with a 56.19~79.24 wt% Au and closely associated with pyrite, chalcopyrite, miargyrite and galena. K-Ar analysis of the altered sericite from the Beonjeong mine yielded a date of $94.2{\pm}2.4\;Ma$ (Lee, 1992). This indicates a likely genetic tie between ore mineralization and intrusion of the middle Cretaceous diorite ($108{\pm}4\;Ma$). The ${\delta}^{34}S$ values ranged from +1.0 to 8.3‰ with an average of +4.4‰ suggest that the sulfur in the sulfides may be magmatic origin. The temperatures of mineralization by the sulfur isotopic composition with coexisting pyrite-galena and pyrite-chalcopyrite from Beonjeong and Jeungheung mines were $343^{\circ}C$ and $375^{\circ}C$ respectively. This temperature is in reasonable agreement with the homogenization temperature of primary fluid inclusion quartz ($330^{\circ}C$ to $390^{\circ}C$; Park.1989). Four samples of quartz from ore veins have ${\delta}^{18}O$ values of +6.9~+10.6‰ (mean=8.9‰) and three whole rock samples have ${\delta}^{18}O$ values of +7.4~+10.2‰ with an average of 7.4‰. These values are similar with those of the Cretaceous Bulgugsa granite in South Korea (mean=8.3‰; Kim et al. 1991). The calculated ${\delta}^{18}O_{water}$ in the ore-forming fluid using fractionation factors of Bulgugsa et al. (1973) range from -1.3 to -2.3‰. These values suggest that the fluid was dominated by progressive meteoric water inundation through mineralization.

  • PDF

Forensic Geology : New Pioneer in Geological Area (과학수사지질학(Forensic Geology)의 출현: 새로운 지질학 영역의 구축)

  • Lee, Ok-Sun;Kim, Seong-Yong
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.705-711
    • /
    • 2007
  • We should treat carefully the one related to human rights among a large number of decision-making in our daily lives. As it is necessary to obtain physical evidences in the process of criminal investigation for solving a certain crime based on the principle of evidence, it leads to an increase in demand for forensic science and forensic geology. Forensic geology could be regarded as a fusion discipline of geology and forensic investigation and it is principally concerned to the study on the connection of a suspect and a crime scene with soil evidence which could be experimented using geological data and methods. So these results could be used as valuable information in a court. After its academic foundation has been builded since the last 1970s, its research objects have been expanded from soil evidence like rocks, minerals, soils, sediments to sociocultural, political, military and medical objects like ancient relics, mines, corpses. Its role is expanded from the simple finding of a particular location to the examination of archaeological theories and historical facts, the testimony of the cause of environmental pollution and the chronic demonstration of geological distribution of plants and anthropological origination. And these bring this discipline promptly to accept developed geological methodologies and to satisfy various forensic geological needs. Specialized forensic investigation institutes work actively for the R&D activities of forensic geology. In Korea, national institute of scientific investigation works a small part of forensic geological activities in total activities of forensic investigation. In conclusion, we concern to the importance of systematic discussion of building in proper position of forensic geology through its R&D methods, application cases of its performance and etc. based on geological characteristics in our country by a specialized geoscience institute.

Hypersensitivity of Somatic Mutations and Mitotic Recombinations Induced by Heterocyclic amines and Aflatoxin $B_1$ in Transgenic Drosophila (형질전환 초파리에서 Heterocyclic Amines와 Aflatoxin $B_1$에 의한 체세포 돌연변이 유발의 고감수성에 관한 연구)

  • 최영현;유미애;이원호
    • Korean journal of applied entomology
    • /
    • v.35 no.4
    • /
    • pp.315-320
    • /
    • 1996
  • The effects of 2-arnino-3-methyIimidazo[4,5-fq]u inoline (IQ), 2-amino-6dimethyl-dipyrido[l,2-a;3',2'-d] imidazole (Glu-P-1) and aflatoxin B1 (AFBI) on the mitotic recombinations and somatic chromosome mutations were investigated using the transgenic Drosophila bearing a chimeric gene consisting of a promoter region of Drosophila actin 5C gene and rat DNA polymerase $. For investigating mitotic recombinations and the somatic chromosome mutations, the heterozygous (mwhl+) strain possessing or lacking transgene pol P was used. The spontaneous frequency of small mwh spots, due to deletion or nondisjunction etc., in the non-transgenic w strain and the transgenic plpol $1-130 strain was 0.351 and 0.606, respectively. The spontaneous frequency (0.063) of large mwh spots, arising mostly from somatic recombination between the centromere and the locus mwh, in the transgenic plpol $1-130 strain, was about three times higher than that (0.021) of the non-transgenic w strain. The mutant clone frequencies of two types induced by two heterocyclic mines (IQ and Glu-P-1) and AFBl in the transformant pbol PI-130 were two or three times higher than those in the host strain w. These mean that rat DNA polymerase P participates at least in the somatic chromosome mutations and mitotic recombination processes. And the present results suggest that the transgenic Drosophl!~ used in this study can be used as a hypersensitive, in vivo short-term assaying system for various environmental mutagens.

  • PDF

Occurrence and Mineralogical Characteristics of Dolomite Ores from South Korea (국내 백운석 광석의 산상과 광물학적 특성)

  • Hwang, Jinyeon;Choi, Jin Beom;Jeong, Gi Young;Oh, Jiho;Choi, Younghun;Lee, Jinhyun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.87-99
    • /
    • 2013
  • The occurrence, mineralogical characteristics, and origin of the dolomite ores were investigated from major dolomite mines in South Korea. Mineralogical and textural properties of the ores and associated minerals were analyzed using X-ray diffraction, thin section petrography, and scanning electron microscopy. Dolomite ores were light to dark gray in color and mainly composed of dolomite in varying particle size with minor amounts of calcite, quartz and micas. Calcite, quartz, illite, feldspar, kaolin minerals, and chlorite occurred in local veins, dikes and alteration zones. Sepiolite and wollastonite occurred in the altered part of some mine. Asbestos minerals such as chrysotile and tremolite, however, were not identified in the present study. Reddish brown to yellow clay materials were mainly composed of illite, occasionally associated with kaolin minerals and smectite. These clay minerals might be a product of the local hydrothermal alteration related to the dyke intrusion and subsequent weathering. As well indicated in the previous studies, mineral composition, texture, and occurrence of the dolostone beds suggest their formation through the diagenesis of carbonate sediments deposited in the shallow sea during the Precambrian to Paleozoic period.

Concentration of Arsenic in Rice Plants and Paddy Soils in the Vicinity of Abandoned Zinc Mine (폐광산 인근 논토양과 수도의 비소함량 조사)

  • Kim, Chan-Yong;Park, Man;Lee, Dong-Hoon;Choi, Choong-Lyeal;Kim, Kwang-Seop;Choi, Jung;Seo, Young-Jin
    • Applied Biological Chemistry
    • /
    • v.45 no.3
    • /
    • pp.152-156
    • /
    • 2002
  • Soils near abandoned zinc mines were known to be contaminated with arsenic-rich mining by-products. To examine the potential impacts of arsenic- contaminated soils on plant growth, surface soils were subjected to sequential extraction. Results revealed that 54% and 74% total As and 74% total extractable As were bound to iron hydrous oxide, and water soluble fraction was below detection limit. Arsenic faction extracted using the Koran standard method(dissolution of metals via treatment of 1 N HCI) was strongly correlated with the Fe-bound As fraction ($r^2=0.884**$). Arsenic level in rice plant roots was the highest with a maximum value of 154.9 mg/kg, whereas it was below 0.6 mg/kg in grains. Arsenic level in rice plant roots was strongly correlated with those of Al-bound As ($r^2=0.821**$) and 1N HCI-extractable As levels ($r^2=0.801**$).

Effect of Contamination by the Abandoned Coal Mine Drainage on the Stream Water in Keumsan, Chungnam (금산(錦山) 폐탄광지역(廢炭鑛地域)의 오염(汚染)이 하천수(河川水)에 미치는 영향(影響))

  • Kim, Myung Hee;Min, Ell Sik;Song, Suckhwan
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.435-442
    • /
    • 1997
  • The research was carried out to investigate the contamination of stream water by the acid mine drainage originated from the abandoned coal mines and coal waste rock in Keumsan, Chungnam. The pH, sulfate and chemical compositions in the stream water were analyzed. At the polluted sites, the pH of stream water was the strong acid, ranging from 3.46 to 4.29. The pH shows negative correlations with sulfate, manganese, copper, zinc, iron and magnesium concentrations. Sulfate concentrations of the polluted stream water, 236.73-310.53mg/l, had 10 times more than those of the non-polluted stream water. The concentrations of heavy metals, Mn and Fe, in the polluted water were 0.56 - 0.83mg/l and 5.89 - 10.58mg/l, respectively. The Mn concentrations were 20 times higher than those of the non-polluted stream water. Compared with those in the non-polluted stream water, the Mg and Ca concentrations in the polluted stream water were high because of leaching from rock and soil to water by the acidifications. Calculated AMDI(Acid Mine Drainage Index) values are low in the polluted stream water, relative to those of the non-polluted water.

  • PDF

A Study on the Recycling of Waste in the Limestone Mine (석탄석광산 폐석의 재활용 연구)

  • Chae, Young-Bae;Joeng, Soo-Bok;Koh, Won-Sik;Park, Je-Shin;Yang, Shi-Young
    • Resources Recycling
    • /
    • v.5 no.4
    • /
    • pp.25-31
    • /
    • 1996
  • The wastes ot l~mestone mines have been cause the extrar.ngance of the valuablz m e r a l s and destruction of the environment. Therefore, \\-c tied ta separation of calcite illid clay from the limestone mine wastes by rotntmg screen type separator made by ourselves in order to recyding such us a raw matcriala for cement maimfacture. CaO amtents in the separated coarse products increased from 37.36 wt% to 42+2 wt% at the condition ihat water content in wastes was lzss than 6wt%, the passing time of specimen in &amber was 15 semnds and the rotation speed was 6OLl qm. A process in order lo separate wastes effectively to having wide range aI part~dcs ize was cstablishcd and CaO contents of coarsc products through this process increased to 46.85 wt%. Tbis rcsult is insuEiicient to directly rcusing as a raw malerials for cement. However, it is supposed that coarse products would be able to be reuscd as a raw materials uf cement, if only it rs sclected dolomite in wastes, and really it may be possible in fields Othenvise, undcrsize products(less than 20 mm) would be able to recycling as a raw of cement bccause chcmicrl campasitions of thosc is kept almost constant v&cs on the overall process.

  • PDF

Geological Structures and Mineralization in the Yeongam Mineralized Zone, Korea (영암 광화대의 지질구조와 광화작용)

  • Ryoo, Chung-Ryul;Park, Seong-Weon;Lee, Hanyeang
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • The Yeongam mineralized zone is located in the southwestern part of the Korean peninsula, including the Sangeun, Eunjeok and Baramjai mines. This zone is located in the northeastern part of the Mokpo-Haenam-Yeongam volcanic circular structure. The 13 sites of quartz vein with mineralization are developed in the Sangeun-Eunjeok-Baramjai area, within rhyolitic welded tuff, showing N-S or NNW trend with highly dipping to the west. The quartz veins occur as a single vein or a bundle of veins with width of 1-5 cm in each. The existence of faults parallel to the quartz veins indicates that the faulting occurred before and after the development of quartz veins and mineralization. The quartz veins and mineralized zone are displaced by NW-trending sinistral strike-slip faults. The extension of the Sangeun-Eunjeok mineralized belt is traced to the south, following a NNW-trending tectonic line, and the Au-Ag contents are analysed in the 12 sites of quartz veins. Contents of gold and silver are 12.3 g/t and 1,380.0 g/t in Eunjeok mine, 2.7 g/t, 23.5g in Sangeun mine, and <0.1 g/t, 5.7 g/t in Baramjai mine respectively. Therefore, a highly Ag-Au mineralized zone is not developed in the southern part of the studied area.