• 제목/요약/키워드: mines

검색결과 857건 처리시간 0.027초

Research on no coal pillar protection technology in a double lane with pre-set isolation wall

  • Liu, Hui;Li, Xuelong;Gao Xin;Long, Kun;Chen, Peng
    • Geomechanics and Engineering
    • /
    • 제27권6호
    • /
    • pp.537-550
    • /
    • 2021
  • There are various technical problems need to be solved in the construction process of pre-setting an isolation wall into a double lane in the outburst prone mine. This study presents a methodology that pre-setting an isolation wall into a double lane without a coal pillar. This requires the excavation of two small section roadways to dig a wide section roadway, followed by construction of the separation wall. During this process the connecting lane is reserved. In order to ensure the stability of the separation wall, the required bearing capacity of the isolation wall is 4.66 MN/m and the deformation of the isolation wall is approximately 25 cm. To reduce the difficulty of implementing support the roadway is driven by 5 m/d. After the construction of the separation wall, the left side coal wall is brushed 1.5 m to make the width of the gas roadway reach 2.5 m and the roadway support utilizes anchor rod, ladder beam, anchor cable beam and net configuration. During construction, the concrete pump and removable self-propelled hydraulic wall mold are used to pump and pour the concrete of the isolation wall. In the process of mining, the stress distribution of coal body and isolation wall is detected and measured on site. The results demonstrate that the deformation of the surrounding rock of roadway and separation of roof in the roadway is small. The stress of the bolt and anchor cable is within equipment tolerance validating their selection. The roadway is well supported and the intended goal is achieved. The methodology can be used for reference for similar mine gas control.

태풍으로 인한 폐광산 하류 지역에서 환경피해 연구 (A Study on Environmental Damage due to Typhoons in Downstream Area of Abandoned Mine)

  • 조성현;이동근;이군택;권오경;김태승
    • 한국지구과학회지
    • /
    • 제43권1호
    • /
    • pp.119-127
    • /
    • 2022
  • 최근 들어 기후변화로 인한 태풍의 강도는 강력해졌다. 광산지역의 광미와 폐석은 수해로 인해 환경에 악영향을 미쳤을 것으로 추정된다. 강릉지역은 3,693호(1936), 루사(2002), 매미(2003), 메기(2004) 등의 국내 최대 태풍의 영향은 받았다. 이번 연구는 태풍으로 인한 수해 이후 하천을 따라 그 주변에 높은 농도의 비소가 검출된 사례를 기초로 하였다. 환경피해 관련 법은 오염 원인자의 책임을 명확히 하고 있지만, 잠재적인 자연재해 지역에서는 세심한 적용이 필요하다. 이러한 지역에서 자연재해의 영향을 최소화하기 위해서 관련 법들의 개선과 연계가 필요하다. 이 연구가 하류 지역에서 혼재된 오염물질 대응에 도움이 되길 기대한다.

Research on reinforcement mechanism of soft coal pillar anchor cable

  • Li, Ang;Ji, Bingnan;Zhou, Haifeng;Wang, Feng;Liu, Yingjie;Mu, Pengfei;Yang, Jian;Xu, Ganggang;Zhao, Chunhu
    • Geomechanics and Engineering
    • /
    • 제29권6호
    • /
    • pp.697-706
    • /
    • 2022
  • In order to explore the stable anchoring conditions of coal side under the mining disturbance of soft section coal pillar in Wangcun Coal Mine of Chenghe Mining Area, the distribution model of the anchoring support pressure at the coal pillar side was established, using the strain-softening characteristics of the coal to study the distribution law of anchoring coal side support pressure. The analytical solution for the reinforcement anchorage stress in the coal pillar side was derived with the inelastic state mechanical model. The results show that the deformation angle of the roadway side and roof increases with the roof subsidence due to the mining influence at the adjacent working face, the plastic deformation zone extends to the depth of the coal side, and the increase of anchorage stress can effectively control the roof subsidence and further deterioration of plastic zone. The roadway height and the peak support pressure have a certain influence on the anchorage stress, the required anchorage stress of the coal side rises with the roadway height and the peak support pressure. The required anchorage stress of the coal pillar side decreases as the cohesion between the coal seam and the roof and floor and the anchor length increases. Then, applied the research result to Wangcun coal mine in Chenghe mining area, the design of anchor cable reinforcement support was proposed for the section of coal pillars side that has been anchored and deformed, which achieved great results and effectively controlled the convergence and deformation of the side, providing a safety guarantee for the roadway excavation and mining.

산업재해 감지 스마트 디바이스 설계 방안 및 성능평가를 위한 지표 도출에 관한 연구 (A Study on Design Method of Smart Device for Industrial Disaster Detection and Index Derivation for Performance Evaluation)

  • 이란희;배기태;최준회
    • 스마트미디어저널
    • /
    • 제12권3호
    • /
    • pp.120-128
    • /
    • 2023
  • 산업재해로 인한 피해를 줄이기 위해 다양한 ICT 기술이 지속적으로 개발되고 있으며, 센서, IoT, 빅데이터, 머신러닝 및 인공지능 등을 활용하여 산업재해 발생 시 피해를 최소화하고자 하는 연구가 진행되고 있다. 본 논문에서는 산업 현장의 밀폐구간, 산악, 해양, 탄광 등의 통신 음영지역에서 디바이스 간 다자간 통신 및 스마트 중계기와의 통신이 가능한 스마트 디바이스의 설계 방안을 제안한다. 제안된 스마트 디바이스는 작업자 위치, 이동 속도 등 작업자 정보와 지형, 풍향, 온도, 습도 등 환경정보를 수집하고 작업자 상호 간의 안전거리를 확보하여 위험 상황 발생 시 경고가 가능하며 헬멧에 부착할 수 있도록 설계하였다. 이를 위해, 스마트 디바이스에 필요한 기능적 요구사항과 스마트 디바이스 내의 센서와 모듈을 이용하여 요구사항을 구현하기 위한 설계 방안과 스마트 디바이스의 성능평가를 위한 지표를 도출하고 산악지역에서의 성능평가를 위한 평가환경을 제안한다.

Physics informed neural networks for surrogate modeling of accidental scenarios in nuclear power plants

  • Federico Antonello;Jacopo Buongiorno;Enrico Zio
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3409-3416
    • /
    • 2023
  • Licensing the next-generation of nuclear reactor designs requires extensive use of Modeling and Simulation (M&S) to investigate system response to many operational conditions, identify possible accidental scenarios and predict their evolution to undesirable consequences that are to be prevented or mitigated via the deployment of adequate safety barriers. Deep Learning (DL) and Artificial Intelligence (AI) can support M&S computationally by providing surrogates of the complex multi-physics high-fidelity models used for design. However, DL and AI are, generally, low-fidelity 'black-box' models that do not assure any structure based on physical laws and constraints, and may, thus, lack interpretability and accuracy of the results. This poses limitations on their credibility and doubts about their adoption for the safety assessment and licensing of novel reactor designs. In this regard, Physics Informed Neural Networks (PINNs) are receiving growing attention for their ability to integrate fundamental physics laws and domain knowledge in the neural networks, thus assuring credible generalization capabilities and credible predictions. This paper presents the use of PINNs as surrogate models for accidental scenarios simulation in Nuclear Power Plants (NPPs). A case study of a Loss of Heat Sink (LOHS) accidental scenario in a Nuclear Battery (NB), a unique class of transportable, plug-and-play microreactors, is considered. A PINN is developed and compared with a Deep Neural Network (DNN). The results show the advantages of PINNs in providing accurate solutions, avoiding overfitting, underfitting and intrinsically ensuring physics-consistent results.

구봉 금광산의 광미 인근지역의 천부지하수 수질특성 (Groundwater quality in the Shallow Aquifer nearby the Gubong gold-mine Tailings)

  • 우남칠;최미정
    • 대한지하수환경학회지
    • /
    • 제5권3호
    • /
    • pp.148-154
    • /
    • 1998
  • 구봉광산은 과거 남한의 최대 금광중의 하나였다. 광산 주변 지역에서는 천부 지하수를 생활용과 농업용 수원으로 사용하여 왔다. 이 지역에서 Cd, Cu, Pb 및 Zn에 의한 토양오염이 보고되었으며, 이로부터 이 지역의 천부지하수의 수질과 광미로 인한 영향을 규명하고자 본 연구가 시작되었다. 인근의 하천수, 지하수 및 광미지역의 침출수 시료를 채취하여 Na, K Ca, Mg 등의 주양이온과 F, Cl, NO$_3$, SO$_4$, HCO$_3$, 등의 음이온 및 Al, Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb, Se, As, Hg 등의 미량 오염원소등을 분석하였다. 분석결과로부터 4가지 유형의 수질특성을 구분하였으며, 이 지역의 지하수는 알칼리니티와 염도에 의한 농업용수로서의 위해성은 없는 것으로 판명되었다. 지하수 중의 주요염물질은 비소였으며, 유비철석(arsenopyrite)의 산화로부터 기인되는 것으로 사료된다. 따라서 기매립된 광미와 퇴적물을 파내는 것은 비소성분의 지하수로의 이동을 유발할 수 있다.

  • PDF

시험 방법에 따른 동결토의 인장강도 (A Comparative Study on the Tensile Strength of Frozen Soil according to Test Methods)

  • 서영교;강효섭
    • 한국지반공학회논문집
    • /
    • 제24권4호
    • /
    • pp.57-66
    • /
    • 2008
  • 본 연구에서는 쪼갬 인장시험과 Fang, H. Y. and Fernandez(1981)에 의해 고안된 일축관입시험을 통한 동결토의 인장강도를 살펴보았다. 본 연구는 영하 15도의 환경 속에서 화강풍화토, 표준사와 카오리가 혼합된 사질 혼합토의 일축관입인장강도와 쪼갬 인장강도가 어떻게 변화하는지를 고찰하였다. 동결공시체는 함수비, 점토함량에 따라 다양하게 실험을 실시하였으며, 함수비와 점토함유량에 따라 일축관입인장강도와 쪼갬 인장강도간의 상호관계를 분석하였다. 결과를 요약하면, 평균적으로 쪼갬 인장강도는 일축관입인장강도에 비해서 4배정도 큰 강도를 나타내었다. 함수비가 증가함에 따라 두 인장강도간의 차이가 크게 나타났으며, 그리고 점토함량이 증가할수록 두 인장강도는 모두 감소하는 경향을 나타내었다.

Research on the deformation characteristics and support methods of the cross-mining roadway floor influence by right-angle trapezoidal stope

  • Zhaoyi Zhang;Wei Zhang
    • Geomechanics and Engineering
    • /
    • 제37권3호
    • /
    • pp.293-306
    • /
    • 2024
  • Influenced by the alternating effects of dynamic and static pressure during the mining process of close range coal seams, the surrounding rock support of cross mining roadway is difficult and the deformation mechanism is complex, which has become an important problem affecting the safe and efficient production of coal mines. The paper takes the inclined longwall mining of the 10304 working face of Zhongheng coal mine as the engineering background, analyzes the key strata fracture mechanism of the large inclined right-angle trapezoidal mining field, explores the stress distribution characteristics and transmission law of the surrounding rock of the roadway affected by the mining of the inclined coal seam, and proposes a segmented and hierarchical support method for the cross mining roadway affected by the mining of the close range coal seam group. The research results indicate that based on the derived expressions for shear and tensile fracture of key strata, the ultimate pushing distance and ultimate suspended area of a right angle trapezoidal mining area can be calculated and obtained. Within the cross mining section, along the horizontal direction of the coal wall of the working face, the peak shear stress is located near the middle of the boundary. The cracks on the floor of the cross mining roadway gradually develop in an elliptical funnel shape from the shallow to the deep. The dual coupling support system composed of active anchor rod support and passive U-shaped steel shed support proposed in this article achieves effective control of the stability of cross mining roadways, which achieves effective control of floor by coupling active support and preventive passive support to improve the strength of the surrounding rock itself. The research results are of great significance for guiding the layout, support control, and safe mining of cross mining roadways, and to some extent, can further enrich and improve the relevant theories of roof movement and control.

A Copula method for modeling the intensity characteristic of geotechnical strata of roof based on small sample test data

  • Jiazeng Cao;Tao Wang;Mao Sheng;Yingying Huang;Guoqing Zhou
    • Geomechanics and Engineering
    • /
    • 제36권6호
    • /
    • pp.601-618
    • /
    • 2024
  • The joint probability distribution of uncertain geomechanical parameters of geotechnical strata is a crucial aspect in constructing the reliability functional function for roof structures. However, due to the limited number of on-site exploration and test data samples, it is challenging to conduct a scientifically reliable analysis of roof geotechnical strata. This study proposes a Copula method based on small sample exploration and test data to construct the intensity characteristics of roof geotechnical strata. Firstly, the theory of multidimensional copula is systematically introduced, especially the construction of four-dimensional Gaussian copula. Secondly, data from measurements of 176 groups of geomechanical parameters of roof geotechnical strata in 31 coal mines in China are collected. The goodness of fit and simulation error of the four-dimensional Gaussian Copula constructed using the Pearson method, Kendall method, and Spearman methods are analyzed. Finally, the fitting effects of positive and negative correlation coefficients under different copula functions are discussed respectively. The results demonstrate that the established multidimensional Gaussian Copula joint distribution model can scientifically represent the uncertainty of geomechanical parameters in roof geotechnical strata. It provides an important theoretical basis for the study of reliability functional functions for roof structures. Different construction methods for multidimensional Gaussian Copula yield varying simulation effects. The Kendall method exhibits the best fit in constructing correlations of geotechnical parameters. For the bivariate Copula fitting ability of uncertain parameters in roof geotechnical strata, when the correlation is strong, Gaussian Copula demonstrates the best fit, and other Copula functions also show remarkable fitting ability in the region of fixed correlation parameters. The research results can offer valuable reference for the stability analysis of roof geotechnical engineering.

Effects of chloride ion transport characteristics and water pressure on mechanical properties of cemented coal gangue-fly ash backfill

  • Dawei Yin;Zhibin Lu;Zongxu Li;Chun Wang;Xuelong Li;Hao Hu
    • Geomechanics and Engineering
    • /
    • 제38권2호
    • /
    • pp.125-137
    • /
    • 2024
  • In paste backfill mining, cemented coal gangue-fly ash backfill (CGFB) can effectively utilize coal-based solid waste, such as gangue, to control surface subsidence. However, given the pressurized water accumulation environment in goafs, CGFB is subject to coupling effects from water pressure and chloride ions. Therefore, studying the influence of pressurized water on the chlorine salt erosion of CGFB to ensure green mining safety is important. In this study, CGFB samples were soaked in a chloride salt solution at different pressures (0, 0.5, 1.5, and 3.0 MPa) to investigate the chloride ion transport characteristics, hydration products, micromorphology, pore characteristics, and mechanical properties of CGFB. Water pressure was found to promote chloride ion transfer to the CGFB interior and the material hydration reaction; enhance the internal CGFB pore structure, penetration depth, and chloride ion content; and fill the pores between the material to reduce its porosity. Furthermore, the CGFB peak uniaxial compression strain gradually decreased with increasing soaking pressure, whereas the uniaxial compressive strength first increased and then decreased. The resulting effects on the stability of the CGFB solid-phase hydration products can change the overall CGFB mechanical properties. These findings are significant for further improving the adaptability of CGFB for coal mine engineering.