• Title/Summary/Keyword: minerals and rocks

Search Result 478, Processing Time 0.024 seconds

Ore Minerals and Genetic Environments of the Seungryung Zn Deposit, Muzu, Korea (무주 승륭 아연광상의 광석광물과 생성환경)

  • Yeom, Taesun;Shin, Dongbok
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • The geology of the Seungryung Zn deposit, located in the Muzu basin, consists of Precambrian leucocratic granitic gneiss, Cretaceous clastic rocks, pyroclastic rocks, and intrusive rocks. The deposit shows a weakly skarnized hydrothermal replacement ore developed along limestone bed in the gneiss. The mineralization can be divided into three stages: the early skarnization producing garnet and pyroxene, the main mineralization in the middle stage precipitating most metallic minerals such as magnetite, sphalerite, chalcopyrite, pyrrhotite, Pb-Ag-Bi-S system minerals, and the late stage for altered or low temperature minerals such as chlorite and marcasite. Pb-Ag-Bi-S system minerals include heyrovskite-eskimoite solid solution, lillianite-gustavite solid solution, and vikingite. Chalcopyrite diseases are quite common in sphalerite showing bead chains and dusting textures. The ${\delta}^{34}S$ values of sulfides minerals are concentrated within the narrow range of 3.4~4.1‰ for pyrite, 3.3~4.3‰ for sphalerite, 4.0~4.3‰ for chalcopyrite, and 2.8‰ for galena, suggesting that most sulfur is of igneous origin. Sulfur isotope geothermometry is calculated to be $346{\sim}431^{\circ}C$, implying that the mineralization occurred at relatively high temperature. FeS contents of sphalerite are relatively high in the range of 6.58~20.16 mole% (avg. 16.58 mole%) with the enrichment of Mn compared to Cd, similarly to representative skarn Pb-Zn deposits in South Korea. On the contrary, sphalerite from Au-Ag deposits in the Seolcheon mineralized zone around the Seungryung deposit is enriched in Cd, showing similar feature like representative epithermal Au-Ag deposits. This suggests that around the related igneous rocks, magnetite and sphalerite were produced at high temperature in the Seungryung deposit, and with decreasing temperature and compositional change of mineralizing fluids, Au-Ag mineralization proceeded in the Seolcheon mineralized zone.

Environmental Geochemistry and Heavy Matel Contamination of Ground and Surface Water, Soil and Sediment at the Kongjujuil Mine Creek, Korea (공주제일광산 수계에 분포하는 지하수, 지표수, 토양 및 퇴적물의 환경지구화학적 특성과 중금속 오염)

  • 이찬희
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.611-631
    • /
    • 1999
  • Enviromental geochemisty and heary metal contamination at the Kongjueil mine creek were underaken on the basis of physicohemical properties and mineralogy for various kinds of water (surface, mine and ground water),soil, precipitate and sediment collected of April and December in 1998. Hydrgeochemical composition of the water samples are characterized by relatively significant enricant of Ca+Na, alkiali ions $NO_3$ and Cl inground and surfore water, wheras the mine waters are relatively eneripheral water of the mining creek have the characteristics of the (Ca+Mg)-$(HCO_3+SO_4)$type. The pH of the mine water is high acidity (3.24)and high EC (613$\mu$S/cm)compared with those of surface and ground water. The range of $\delta$D and $\delta^{18}O$ values (relative to SMOW) in the waters are shpwn in -50.2 to -61.6% and -7.0 to -8.6$\textperthousand$(d value=5.8 to 8.7). Using computer program, saturation index of albite, calcite, dolomite in mine water are nearly saturated. The gibbiste, kaolinite and smectite are superaturated in the surface and ground water, respectively. Calculated water-mineral reaction and stabilities suggest that weathing of silicate minerals may be stable kaolinite owing to the continuous water-rock reaction. Geochemical modeling showed that mostly toxic heavy metals may exist larfely in the from of metal-sulfate $(MSO_4\;^2)$and free metal $(M^{2+})$ in nmine water. These metals in the ground and surface water could be formed of $CO_3$ and OH complex ions. The average enrichment indices of water samples are 2.72 of the groundwater, 2.26 of the surface water and 14.15 of the acid mine water, normalizing by surface water composition at the non-mining creek, repectively. Characteristics of some major, minor and rate earth elements (Al/Na, K/Na, V/Ni, Cr/V, Ni/Co, La/Ce, Th/Yb, $La_N/Yb_N$, Co/Th, La/Sc and Sc/Th) in soil and sediment are revealed a narrow range and homogeneous compositions may be explained by acidic to intermediate igneous rocks. And these suggested that sediment source of host granitic gneiss colud be due to rocks of high grade metamorphism originated by sedimentary rocks. Maximum concentrations of environmentally toxic elements in sediment and soil are Fe=53.80 wt.% As=660, Cd=4, Cr=175, Cu=158, Mn=1010, Pb=2933, Sb=4 and Zn=3740 ppm, and extremely high concentrations are found are found in the subsurface soil near the ore dump and precipitates. Normalizing by composition of host granitic gneiss, the average enerichment indices are 3.72 of the sediments, 3.48 of the soils, 10.40 of the precipitates of acid mine drainage and 6.25 of the soils near the main adit. The level of enerichment was very severe in mining drainage sediments, while it was not so great in the soils. mineral composition of soil and sediment near the mining area were partly variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. reddish variable being composed of quartz, mica, feldspar, chlorite, vermiculite, bethierin and clay minerals. Reddish brown precipitation mineral in the acid mine drainage identifies by schwertmanite. From the separated mineralgy, soil and sediment are composed of some pyrite, arsenopyite, chalcopyrite, sphalerite, galena, malachite, goethite and various kinds of hydroxied minerals.

  • PDF

Cause of Rockfall at Natural Monument Pohang Daljeon-ri Columnar Joint (천연기념물 포항 달전리 주상절리의 낙석 발생원인)

  • Kim, Jae Hwan;Kong, Dal-Yong
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.497-510
    • /
    • 2022
  • Monthly monitoring, 3D scan survey, and electrical resistivity survey were conducted from January 2018 to August 2022 to identify the cause of rockfall occurring in Daljeon-ri Columnar Joint (Natural Monument No. 415), Pohang. A total of 3,231 rocks fell from the columnar joint over the past 5 years, and 1,521 (47%) of the falling rocks were below 20 cm in length, 978 (30.3%) of 20-30 cm, and 732 (22.7%) of rocks over 30 cm. While the number of rockfalls by year has decreased since 2018, the frequency of rockfalls bigger than 30 cm tends to increase. Large-scale rockfalls occurred mainly during the thawing season (March-April) and the rainy season (June-July), and the analysis of the relationship between cumulative rainfall and rockfall occurrence showed that cumulative rainfall for 3 to 4 days is also closely related to the occurrence of rockfall. Smectite and illite, which are expansible clay minerals, were observed in XRD analysis of the slope material (filling minerals) in the columnar joint, and the presence of a fault fracture zone was confirmed in the electrical resistivity survey. In addition, the confirmed fault fracture zone and the maximum erosion point analyzed through 3D precision measurement coincided with the main rockfall occurrence point observed by the BTC-6PXD camera. Therefore, the main cause of rockfall at Daljeon-ri columnar joint in Pohang is a combination of internal factors (development of fault fracture zones and joints, weathering of rocks, presence of expansive clay minerals) and external factors (precipitation, rapid thawing phenomenon), resulting in large-scale rockfall. Meanwhile, it was also confirmed that the Pohang-Gyeongju earthquake, which was continuously raised, was not the main cause.

Geochemical Characteristics of Allanite from Rare Metal Deposits in the Chungju Area, Chungcheongbuk-Do (Province), Korea (충주지역 희유원소광상에서 산출되는 갈렴석의 지구화학적특성)

  • Park, Maeng-Eon;Kim, Gun-Soo;Choi, In-Sik
    • Economic and Environmental Geology
    • /
    • v.29 no.5
    • /
    • pp.545-559
    • /
    • 1996
  • Rare metal (Nb-Zr-REE) ore deposits are located in the Chungju area. Geotectonically, the rare metal ore deposits are situated in the transitional zone between Kyeonggi massif and Okcheon belt. The rare metal deposits are distributed in Kyemyeongsan Formation which consist of schist and alkaline igneous rocks. Alkali granite has suffered extensive post-magmatic metasomatism and hydrothermal processes. The ore contains mainly Ce-La, Ta-Nb, Y, Y-Nd, Nd-Th group minerals. More than 15 RE and REE minerals are found in the ore deposits. Allanite, one of the Ce-La rich REE minerals belonging to the epidote group, is the most common mineral in the studied area. The allanite- bearing rocks may be devided into seven types by features of occurrence and mineral associations; zircon type (ZT), allanite-vein type (AT), feldspar type (KT), fluorite type (FT), quartz-mica type (QT), iron-oxide type (MT), and amphibole type (HT). The allanite veins (AT) and zircon rich rocks (ZT) contain the highest total REE contents. Differences in REE abundance can be interpreted in terms of varying portions of magmatic hydrothermal fluid. Petrographical and chemical data are presented for allanites which were collected from different types. The allanites show wide variations in optical properties, due in part to differences in their chemical composition (depending on the types) and to the degree of crystallinity of the individual specimens. Allanite metamicts in biotite are generally surrounded by well developed pleochroic haloes. Usually, allanite is accompanied by zircon and other REE-bearing minerals. CaO and total REE contents $({\sum}RE_2O_3)$ range from 9.29 to 18.79% and 11.66 to 26.31%, respectively. Also, SiO, (28.87~32.61%), $Al_2O_3$ (8.30~16.88%), and $Fc_2O_3$ (16.74~24.38%) contents show varying contents from type to type. The ${\sum}RE_2O_3$ of allanite has positive relationships with $Fe_2O_3$ and negative relaton with CaO, $SiO_2$, and $Al_2O_3$ Backscattered electron microscope images (BEl) of allanite shows that the its mineral composition and texture is very complex. The allanite-bearing hosts show distinct light REE enrichment with strong negative Eu anomaly except for HI. The HT has an almost flat REE distribution pattern with a small negative Eu anomaly. The chemical variation of the allanites with occurrences and mineral association can be related to condition of temperature and oxidation states in precipitation environment.

  • PDF

Characteristics of the Small Scale Leucocratic Granites in the Eastern Parts of the Taebaegsan Region, Korea (태백산 지역 동부에 분포하는 소규모 우백질 화강암체의 특징)

  • Yoo, Jang-Han;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.375-383
    • /
    • 2014
  • Precambrian granitic gneisses and Cambrian meta-sedimentary rocks are prevalently distributed in the eastern part of the Taebaegsan region, and biotite granitic batholith of the Jurassic period (?) is found in the southern part of Uljin-si. But small scale leucocratic granitic stocks which commonly found here and there have been rather neglected in the previous studies. The presence of leucocratic granites could be differentiated from the older granitic rocks and biotite granite through the outcrop characteristics, mineral species and geochemical compositions. For the effective comparison between the older granitic rocks and leucocratic ones, pale gray to gray coloured Hongjesa granitic gneiss with granular texture was selectively chosen. The Hongjesa granitic gneiss and biotite granite usually have rather plenty of coloured minerals such as biotite and chlorites. But the leucocratic granites often show sericitic alteration due to the albitization and greisenisation during the post-magmatic alteration, and shows rather bright appearance because of poor amount of coloured minerals. Since all of granitic rocks passed rather high degrees of magmatic differentiation, they belong to calc-alkalic and peraluminous in their characters. Among the alkali elements of the leucocratic rocks $K_2O$ shows higher increase than those of the other granitic rocks, and $Na_2O$ only represents slight decrease than those of the Hongjesa granitic gneiss and Uljin granite. On the other hand, CaO and total Fe content are clearly decreased than those of the Hongjesa granitic gneiss and Uljin granite.

Occurrence of Clay Minerals from the Bobae Pottery Stone Mine in Pusan (부산 보배도석광산에서 산출하는 점토광물의산상)

  • Hwang, Jin-Yeon;Kim, Kwang-Hye;Jeong, Yoon-Yeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.27-37
    • /
    • 1993
  • The clay minerals such as sericite, pyrophyllite, chlorite and smectite abundantly occur in the Bobae pottery stone mine in Pusan. In this study, the processes which are responsible for the formation of these minerals were studied by examing their occurrence and mineralogical properties. The so-called pottery stone of this mine is characterized by the predominance of sericite and quartz. The sericite of the pottery stone is mostly $2M-{1}$ type. And many of quartz particles are smaller than a few micron in diameter. The pottery stone also contained a small amount of pyrophyllite and muscovite. The pottery stone deposit occurs within the Cretaceous rhyodacite and is particularly well developed near the contact with the quartz porphyry which intrudes the rhyodacite. The fact implies that the pottery stone is the product of hydrothermal alteration of the rhyodacite by the intrusion of quartz porphyry. The pottery stone was formed by the alteration that accompanies the dissociation of feldspar and chlorite in parent rocks and subsequent formation of sericte and quartz. Smectite, laumontite and kaolinite occur locally within the altered rocks. These minerals were formed after formation of pottery stone. It is noteworthy that beidellite occurs as a pink-colored clay from the altered rocks in the mine.

  • PDF

Genesis of Talc Ore Deposits in the Yesan Area of Chungnam, Korea (충남(忠南) 예산지구(禮山地區) 활석광상(滑石鑛床)의 성인(成因)에 관(關)한 연구(硏究))

  • Woo, Young-Kyun;Choi, Suck-Won;Park, Ki-Hwa
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.363-378
    • /
    • 1991
  • Field and microscopic evidence, XRD,EPMA and chemical data suggest that parent rock of talc ore deposits of Yesan district was originated from ultramafic igneous rock. Parent rock can be divided into serpentinized dunite, serpentinized peridotite, metagabbro, amphibolite and hornblende schist. The ore deposits are highly sheared, and show many evidences of hydrothermal alteration and metamorphism at the greenschist and albite-epidote amphibolite facies. The process of steatitization is variable depending upon the composition, and the degree of alteration and metamorphism of the parent rocks. Steatitization can be divided into two processes with or without serpentinization. The parent rocks with serpentinization are serpentinized dunite, serpentinized peridotite and metagabbro, showing the following alteration process; olivine ${\rightarrow}$ serpentine${\rightarrow}$ talc. The rocks without serpentinization are amphibolite and hornblende schist showing the following sequence; hornblende${\rightarrow}$ chlorite${\rightarrow}$ talc. Formation of talc deposits is summarized as following six stages; I) Intrusion of ultramafic rocks, 2) autometamorphism, 3) metamorphism at greenschist and albite-epidote-amphibolite facies, 4) brittle deformation, 5) hydrothermal alteration, 6) purification of low-grade talc by late dyke intrusion.

  • PDF

Development and Application of Geological Field Study Sites in the Area of Igneous Rocks (화성암 지역의 야외지질학습장 개발 및 적용)

  • Kim, Hwa Sung;Ham, Ho Shik;Lee, Moon Won
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.274-285
    • /
    • 2013
  • The purpose of this study was to develop geological field study sites for learning topography and geology of the area with igneous rocks, specifically in Duibaejae volcanic edifice and Seonang-bawi that were distributed in Goseong-gun, Gangwon-do area. As a follow up, we conducted a study to examine the effect of the study sites when applied to high school freshmen Earth science course. The study proceeded based on the Orion's model in the order of preparatory unit, field trip, and summary unit. The geological field study sites were developed based on the geological study elements presented in the Korean Earth science curriculum. Before the field trip, students simply memorized factual knowledge on minerals, rocks and etc., and showed very low level of understanding on the formation process of the region that was distributed with granite and basalt. Especially, their understanding showed that granite and basalt were formed from the same magma at the same time. After the field trip, they increased in-depth level of understanding about minerals, rocks, and geological structures, but were not able to explain the topographical characteristics of the two rocks because they did not recognize the times of the creation of granite and basalt. The reason is that they have learned the simple concept of the process of forming granite and basalt in their middle school, but that they have not learned the meaning of the difference between two the geological eras when each of the two rocks, granite and basalt, were formed.

Geochemistry and K-Ar Age of Gabbroic Rocks in the Konamsan Area of Yonchon Province, South Korea (연천 고남산 지역에 분포하는 반려암질암의 암석화학과 관입시기)

  • Kim, Kyu Han;Lee, Hyun Joo
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.29-39
    • /
    • 1994
  • Gabbroic rocks in which titanomagnetite orebodies are embedded were emplaced in Precambrian metasedimentary rocks. Hornblende K-Ar ages for equigranula and gneissic gabbros were obtained to be $1021.8{\pm}14.5$ Ma and $1468.4{\pm}20.8$ Ma, respectively. Biotite-granite has an age of 116.4 Ma, which has corresponded to Daebo granite. Amphibole minerals of the gabbroic rock and the magnetite orebodies belong to calcic amphibole group such as ferroan pargasite, pargasite, and ferro-pargasite. The gabbroic rocks have unusually high content of $TiO_2$ ranging from 0.88 to 6.03 wt.% with an average value of 3.46 wt.% as compared to normal gabbroic rock with 1.32 wt.% in $TiO_2$. Incompatible elements such as Ba and Sr of the gabbros are negatively correlated with $SiO_2$. In contrast, Co and Cr have a positive correlation with $SiO_2$, suggesting a normal differentiation trend of gabbroic magma.

  • PDF

Petrochemical Study on the Precambrian Granitic Rocks in the Basement Area of Hambaeg Basin (함백익지(咸白益地) 기반지역(基盤地域)에 분포(分布)하는 선(先)캠브리아 화강암질암류(花崗岩質岩類)의 암석화학적(岩石化學的) 연구(硏究))

  • Yun, Hyun Sao;Lee, Dai Sung
    • Economic and Environmental Geology
    • /
    • v.19 no.1
    • /
    • pp.35-55
    • /
    • 1986
  • The area of this study is located in the Sang dong district, Youngwol Gun, Kangwon Do, where the Ogcheon fold belt comes into contact with the Ryongnam massif. The area is covered by the Precambrian metasedimentary rocks of Yulri Group in the south from the line of Ungyosan-Maebongsan-Jansan-Taebaegsan Mountains and by the Cambro-Ordovician sedimentary rocks of Choseon Supergroup in the north. The Choseon Supergroup unconformably overlies the Yulri group. Several granitic intrusives occur in the Precambrian and Cambro-Ordovician terrain. The purpose of this study is to clarify the geochronology, mineralogical composition, geochemical characteristics, petrogenesis and tectonic settings of the Precambrian granitic rocks, and to evaluate the P.T. conditions of granitic intrusions. The K/Ar ages obtained from the muscovite of Nonggeori Granite, Naedeogri granite and pegmatite intruded into the Yulri Group are Early Proterozoic ($1805{\pm}18Ma$ to $1642{\pm}23Ma$), and those from the migmatitic pegmatite are Late Carboniferous ($305{\pm}4Ma$), respectively. The Precambrian granitic rocks are characterized by the presence of muscovite, tourmaline and grey feldspar with faint lineation of mafic minerals. In terms of mineralogical and chemical composition, the granitic rocks are felsic, calc-alkalic, peraluminous and S-type (ilmenite-series). The geochemical characteristics of major and trace elements indicate that the granitic rocks belong to syn-collision setting at the compressional plate margin. They were formed by progressive melting of relatively homogeneous crustal materials under 1~3kb and $670^{\circ}{\sim}720^{\circ}C$ in aqueous fluid conditions, and the Naedeogri granite was more fractionated than the Nonggeori granite. During the Taebaeg disturbance, Nonggeori granite, Naedeogri granite and pegmatite were intruded and emplaced into the Yulri Group. Migmatitic pegmatite occurring in the southwestern area, however, gave much younger muscovite age than the pegmatite intruded into the Yulri Group in rest of the area did, that might be due to the regional metamorphism of the Post-Choseon disturbance. The Geodo granitic mass and the Imog granite were intruded during the Bulgugsa disturbance.

  • PDF